МАКРОЭКОНОМИЧЕСКОЕ МОДЕЛИРОВАНИЕ

К. Ю. Борисов, В. Ю. Фадеев

ЭНДОГЕННЫЙ ЭКОНОМИЧЕСКИЙ РОСТ В УСЛОВИЯХ ГЛОБАЛИЗАЦИИ: ПОДХОД К МОДЕЛИРОВАНИЮ

Введение

В последние десятилетия в экономической литературе уделяется много внимания техническому прогрессу. Наличие технического прогресса стало играть решающую роль в объяснении экономического роста, так как в развитых странах использование трудовых ресурсов и физического капитала приблизилось к максимально эффективному.

Модели экономического роста подразделяют на модели экзогенного и модели эндогенного роста. Их отличие состоит в том, что, во-первых, темп технического прогресса (а вместе с ним и долгосрочный темп экономического роста) просто считается заданной величиной, а во-вторых — зависит от параметров, характеризующих поведение экономических агентов.

Современная теория экономического роста берет свое начало с модели Солоу¹, представляющей собой модель экзогенного роста. Она основана на предположении, что деление национального продукта на потребляемую и сберегаемую части осуществляется с помощью экзогенно заданной и не меняющейся с течением времени нормы сбережения. В модели Солоу существует только одна невырожденная траектория сбалансированного роста, и любая траектория сходится к данному состоянию сбалансированного роста. При этом долгосрочный темп роста экономики полностью определяется темпом роста рабочей силы и темпом технического прогресса, который в рамках модели является величиной экзогенно заданной.

Кирилл Юрьевич БОРИСОВ — канд. физ.-мат. наук, ст. науч. сотр. СПб. экономико-математического института РАН. Преподает на кафедре экономической кибернетики СПбГУ и в Европейском университете в СПб. В 1980 г. окончил экономический факультет, в 1985 защитил кандидатскую диссертацию на математико-механическом факультете ЛГУ. Основные научные интересы — математическая теория экономической динамики и равновесия, макроэкономика.

Владислав Юрьевич ФАДЕЕВ — аспирант СПб. экономико-математического института РАН, слушатель Европейского университета в СПб. В 2003 г. окончил математико-механический факультет СПбГУ. Основные научные интересы — теория экономического роста.

© К. Ю. Борисов, В. Ю. Фадеев, 2007

В многочисленных моделях эндогенного роста, простейшими из которых являются так называемые AK-модели 2 , темп технического прогресса и долгосрочный темп роста экономики определяются параметрами, характеризующими поведение экономических агентов. Основное предположение, характеризующее AK-модели, состоит в том, что значение показателя A, отражающего состояние трудодобавляющего технического прогресса, пропорционально капиталовооруженности K/L (здесь, как обычно, K — запас основного капитала, а L — количество рабочей силы, которое далее предполагается неизменным), а именно, выполняется равенство $A = \frac{1 \cdot K}{\overline{k} \cdot L}$, где величина $\overline{k} > 0$ предполагается экзогенно заданной. Отсюда вытекает, что капиталовооруженность эффективного труда, количество которого равно AL, является величиной неизменной: $\frac{K}{AL} = \overline{k}$, а долгосрочный темп экономического роста увеличивается с ростом нормы сбережения.

Модели эндогенного экономического роста представляются более предпочтительными по сравнению с моделями экзогенного роста, поскольку с их помощью можно пытаться дать ответ на вопросы о том, каковы механизмы экономического роста и какие меры экономической политики можно предпринимать для их увеличения. Однако убедительных доказательств того, что модели эндогенного роста лучше моделей экзогенного роста описывают процессы экономического развития, не получено³.

В данной статье будет предложена модель мирового экономического роста в дискретном времени, которая является некоторой комбинацией модели экзогенного роста и AK-модели. В этой модели мы будем предполагать, что состояние технического прогресса в отдельной стране зависит от двух величин: мирового уровня технического прогресса и уровня капиталовооруженности в данной стране. Замечательным свойством предлагаемой модели является то, что с точки зрения каждой отдельной страны технический прогресс может выглядеть экзогенным, однако для мировой экономики он является эндогенным.

Эндогенный рост малой экономики

Прежде чем строить модель мирового экономического роста, предварительно рассмотрим несложную модификацию AK-модели, точнее, некоторую ее комбинацию с моделью экзогенного роста. Рассматривается экономика, в которой выпуск валового национального продукта Y задается с помощью макроэкономической производственной функции Y=F(K, AL), удовлетворяющей традиционным требованиям. Значение переменной A, отражающей состояние технического прогресса в моделируемой экономике, определяется равенством

$$A = \psi \left(K / \left(L \overline{k} \right), \widetilde{A} \right),$$

где величина $\overline{k}\;$ экзогенно зафиксирована на некотором неизменном уровне, а величина $\widetilde{A}\;$ показывает состояние технического прогресса в мире, растущего экзогенно заданным темпом $\widetilde{g}>0$:

$$\widetilde{A}_{t+1} = (1 + \widetilde{g})\widetilde{A}_t$$

где t – это переменная времени, принимающая дискретные значения (t = 0, 1, ...). Функция $\Psi(\cdot,\cdot)$ показывает, в частности, какова степень зависимости отечественного уровня технического прогресса от мирового. В том случае, когда $\psi\left(K/\left(L\bar{k}\,\right),\;\widetilde{A}\right) = K/\left(L\bar{k}\,\right),\;$ зависимости нет никакой, и мы находимся в рамках AK-модели. Если же $\psi\left(K/\left(L\bar{k}\,\right),\;\widetilde{A}\right) = \widetilde{A}$,

то уровень технического прогресса полностью определяется его мировым уровнем, и речь идет о модели экзогенного роста. При этом предполагаем, что функция $\Psi(\cdot,\cdot)$ непрерывна, вогнута и положительно однородна первой степени.

Несложно заметить, что если количество задействованного основного капитала K растет таким же темпом, как и \tilde{A} , то и для экономики в целом характерен тот же темп роста. Ответ на вопрос о том, может ли она расти более высоким темпом в течение бесконечно долгого промежутка времени, зависит от устройства функции ψ и нормы сбережения. Этот факт легко проиллюстрировать на числовом примере. Предположим, что динамика задается следующими соотношениями:

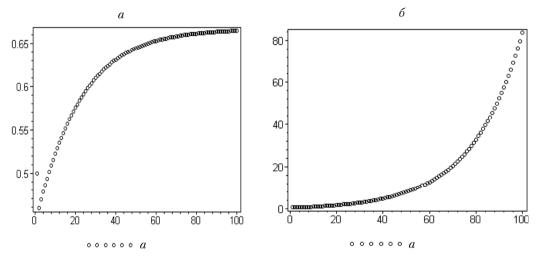
$$Y_{t} = F(K_{t}, A_{t}L), K_{t+1} = (1-\mu)K_{t} + sY_{t}, A_{t+1} = \psi(K_{t}/(L\bar{k}), \tilde{A}_{t}),$$

где s — неизменная норма сбережения, а μ — коэффициент износа капитала.

Пусть $k_t = \frac{K_t}{A_t L}$, $a_t = \frac{A_t}{\widetilde{A}_t}$ — это, соответственно, капиталовооруженность эффективно-

го труда и соотношение между состоянием технического прогресса в рассматриваемой стране и в мировой экономике.

На рис. 1, a и δ для двух условных численных примеров изображено поведение показателя $a_t = A_t / \tilde{A_t}$ во времени. В этих двух примерах все параметры, за исключением лишь нормы сбережения, являются идентичными⁴.



Puc. 1.

Эндогенный рост в глобальной экономике

В первом примере (рис. 1, a) норма сбережения принята на сравнительно низком уровне, а во втором (рис. 1, δ) — на более высоком. Как показывает рисунок, в первом примере величина a_t сходится, что говорит о выравнивании темпов технического прогресса в моделируемой экономике и темпа мирового технического прогресса. Это объясняется сравнительно низкой нормой сбережения и сравнительно высоким темпом роста мирового технического прогресса. Если же установить норму накопления на достаточно высоком уровне, то динамика получается качественно иная, а именно, будет иметь место превышение темпов роста технического прогресса в рассматриваемой экономике по

сравнению с темпами технического прогресса в мире, что и показано на рис. 1, δ . Таким образом, мы можем сделать вывод, что темп технического прогресса малой экономики существенным образом зависит от соотношения между внутренней нормой накопления и темпом роста мирового технического прогресса. Этот вывод несложно было бы представить в виде некоторого формального утверждения.

Выше мы основывались на предположении, что состояние технического прогресса в мире задается экзогенным образом. Однако такое предположение не является удовлетворительным в ряде случаев, в частности, когда долгосрочный темп технического прогресса в рассматриваемой экономике превышает мировой, поскольку при этом экономику уже нельзя считать малой и следует учитывать ее влияние на мировой технический прогресс. Теперь рассмотрим модель мировой экономики, состоящей из нескольких национальных экономик, в которой показатель, отражающий состояние технического прогресса в мире, формируется эндогенно. Будем считать, что в каждый момент времени t величина этого показателя (обозначим его через $\tilde{A_t}$) зависит от состояния технического прогресса в отдельных странах

 $\widetilde{A}_t = \Phi\left(A_t^1, ..., A_t^J\right),\tag{1}$

где J — количество стран, составляющих мировую экономику, а A_t^i — состояние технического прогресса в стране i в момент времени t, а функция $\Phi: R_+^J \to R_+$ является положительно однородной первой степени, непрерывной, монотонно возрастающей по каждой компоненте и удовлетворяет для любого A>0 равенству $\Phi(A,...,A)=A$. Например, в качестве $\Phi(\bullet)$ можно взять среднее арифметическое величин, показывающих состояние технического прогресса в отдельных странах: $\Phi\left(A_t^1,...,A_t^J\right)=\sum_{i=1}^J A_t^i/J$. Что касается динамики технического прогресса, то для каждой страны она задается

Что касается динамики технического прогресса, то для каждой страны она задается практически теми же соотношениями, что и выше (с той лишь разницей, что состояние технологии в мире и капиталовооруженность в стране воздействуют на состояние технологии с единичным лагом):

$$A_{t+1}^{i} = \psi^{i} \left(K_{t}^{i} / L^{i} \overline{k}^{i}, \widetilde{A}_{t} \right), \tag{2}$$

где K_t^i – количество основного капитала в стране i в момент $t, L^i > 0$ – неизменное количество рабочей силы в этой стране, \overline{k}^i – экзогенно заданные параметры, а функции $\Psi^i(\cdot,\cdot)$ непрерывны, вогнуты и положительно однородны первой степени.

Предположим, что в каждой стране i норма сбережения s^i является неизменной, обозначим через Y_t^i выпуск валового национального продукта в i-й стране в период t и выпишем соотношения, которые вместе с (1) и (2) полностью задают динамику модели:

$$Y_t^i = F^i \left(K_t^i, A_t^i L^i \right), K_{t+1}^i = \left(1 - \mu^i \right) K_t^i + s^i Y_t^i,$$

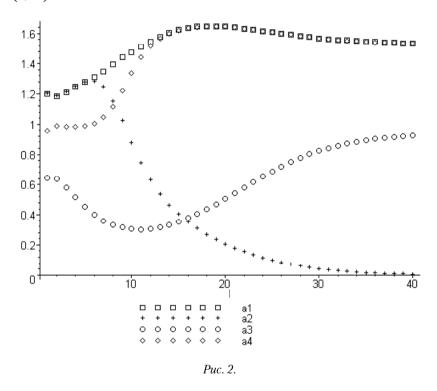
где $F^i(\cdot,\cdot)$ – неоклассическая производственная функция, а μ^i – коэффициент выбытия капитала в стране i. Сразу же заметим, что при условии, что количество стран в мире достаточно велико, мировой технический прогресс для каждой отдельной страны является экзогенно заданным (если эта страна не является очень большой), однако в масштабах мировой экономики он, в отличие от предыдущего пункта, является эндогенным.

На рис. 2 изображена динамика показателей $a_t^i = \frac{A_t^i}{\widetilde{A}_t}$ для условного примера мировой экономики, состоящей из четырех стран с одинаковыми производственными

функциями, но различными нормами сбережения (s^1 =0.2, s^2 =0.25, s^3 =0.3, s^4 =0.4; начальные (в момент времени t=0) значения состояния технического прогресса и капиталовооруженности эффективного труда соответственно равны)⁵:

$$A_0^1 = 5$$
, $A_0^2 = 2$, $A_0^3 = 3$, $A_0^4 = 5$, $K_0^1 / \left(A_0^1 L^1 \right) = 4$, $K_0^2 / \left(A_0^2 L^2 \right) = 1$, $K_0^3 / \left(A_0^3 L^3 \right) = 1$, $K_0^4 / \left(A_0^4 L^4 \right) = 1$.

Рис. 2 позволяет предположить, что в нашей модели для каждой страны i имеет место сходимость показателя a_t^i , а также капиталовооруженности эффективной рабочей силы $k_t^i = K_t^i / \left(A_t^i L^i \right)$ при $t \rightarrow \infty$.



Чтобы показать, что эти величины действительно сходятся, для всех t = 0,1,... положим

$$x_{t} = \left[\left(K_{t}^{1}, A_{t}^{1} \right), \left(K_{t}^{2}, A_{t}^{2} \right), ..., \left(K_{t}^{J}, A_{t}^{J} \right) \right]$$

и заметим, что динамику нашей модели можно полностью описывать с помощью соотношения

$$x_{i+1} = H(x_i), \tag{3}$$

где естественно определяемое отображение $H: R_+^{2J} \to R_+^{2J}$ является непрерывным, положительно однородным первой степени и монотонным в следующем смысле:

$$x > y \ge 0 \Rightarrow H(x) >> H(y)^6$$
.

Согласно известной теореме о положительно однородных отображениях 7 существует вектор $\hat{u} >> 0$ и число $\lambda > 0$, такие что

$$H(\hat{u}) = \lambda \hat{u}$$

причем для любой последовательности $(x_t)_{t=0}^{\infty}$, исходящей из ненулевого начального состояния и задаваемой равенством (3), найдется такое число $\gamma > 0$, что для всех j=1,...,2J при $t\to\infty$ имеет место сходимость $x_t^{j}/(\lambda^i\hat{u}^j)\to\gamma$ и, следовательно, для всех j,k=1,...,2J существуют и положительные пределы $\lim_{t\to\infty}\frac{x_t^k}{x_t^j}$. Применительно к рассматриваемой нами модели это, в частности, означает, что для всех i=1,...,J существуют пределы $\lim a_t^i$, $\lim k_t^i$.

Из проведенного рассуждения вытекает, что темп роста мировой экономики зависит от норм сбережения в различных странах (причем не только от нормы сбережения в самой передовой стране). При этом какая бы норма сбережения ни была в отдельно взятой стране, долгосрочный темп роста этой экономики не может быть выше, чем мировой, однако данная норма накопления может повлиять на этот темп. Вклад отдельных стран в мировой прогресс оказывается различным, однако темпы технического прогресса в разных странах выравниваются в долгосрочной перспективе.

Возвращаясь к рассмотренному выше условному примеру (рис. 2), обратим внимание на довольно интересный характер итогового соотношения показателей a_i^t . Как и следовало ожидать, более высокое предельное значение показателя a_t^i соответствует более высокой норме сбережения. Однако многочисленные проведенные нами условные расчеты показали, что в некоторых случаях, один из которых представлен на рис. 2, возможна ситуация, когда странам с различными нормами накопления соответствуют фактически одинаковые предельные значения a_t^i . Похожую картину рисуют некоторые эмпирические наблюдения, которые показывают, что в процессе развития страны разбиваются на несколько групп таким образом, что внутри каждой группы имеется сходимость по уровню развития, а между различными группами такой сходимости не наблюдается. Такая ситуация иногда называется «клубной сходимостью» (club convergence)8.

Статья поступила в редакцию 19 апреля 2007 г.

¹ Solow R. A contribution to the theory of economic growth // Quarterly Journal of Economics, 1956. Vol. 70. P. 65-94.

² По поводу АК-модели см.: Romer P. Increasing returns and long-run growth // Journal of Political Economy. 1986. Vol. 94. P. 1002–1037; Rebelo S. Long-run policy analysis and long-run growth // Journal of Political Economv. 1991. Vol. 99. P. 500-521.

³ Много полезных ссылок по поводу эмпирических исследований экономического роста можно найти в книге: Шараев Ю. В. Теория экономического роста. М., 2006.

 $^{^4}$ В этих примерах $F(K,L)=K^{0.4}L^{0.6}$, $\Psi(x,y)=0.6x+0.4y,g=0.2$, $\overline{k}=1$, коэффициент выбытия капитала в обоих случаях равен нулю. Норма сбережения s в первом из этих примеров равна 0.4, а во втором -0.2.

 $^{^{5}}$ В этом примере $\overset{\leftarrow}{k}=1$ и $F^{i}(K,L)=(0.5K^{-5}+0.5L^{-5})^{-1/5}, \Psi^{i}(x,y)=(0.5x^{-5}+0.5y^{-5})^{-1/5}, \mu^{i}=0.4$ для всех i=1,2,3,4. 6 Здесь для векторов x и y из $\overset{n}{R}_{+}^{n}$ используются следующие обозначения: $x\geq y \Leftrightarrow x^{i}\geq y^{i}$ $(i=1,...,n); x>y \Leftrightarrow x^{i}\geq y^{i}$ $x \ge y, x \ne y; x > y \Leftrightarrow x^i > y^i (i = 1, ..., n).$

⁷ Теорема 10.7 в книге: *Никайдо X*. Выпуклые структуры и математическая экономика. М., 1972.

⁸ По поводу различных видов сходимости см. работу: Galor O. Convergence? Inferences from theoretical models // Economic Journal. 1996. Vol. 106. P. 1056-1069.