СТОХАСТИЧЕСКИЕ МОДЕЛИ ПРИНЯТИЯ РЕШЕНИЙ

С. А. Вавилов, К. Ю. Ермоленко

ОБОБЩЕННАЯ ЗАДАЧА СТОХАСТИЧЕСКОГО УПРАВЛЕНИЯ ИНВЕСТИЦИОННЫМ ПОРТФЕЛЕМ

В опубликованной ранее работе авторов¹ рассматривалась задача стохастического управления инвестиционным портфелем, содержащим один вид ценных бумаг и наличные деньги. Настоящее исследование посвящено обобщению полученных результатов на многомерный случай, т. е. построению управления инвестиционным портфелем, включающим бумаги произвольного количества видов и наличные деньги. Основной результат статьи связан с доказанным теоретически и подтвержденным экспериментально мультипликативным эффектом, когда наличие многомерности обеспечивает существенное увеличение прибыли в комбинированном портфеле по сравнению с суммарной прибылью независимо управляемых по каждому из отдельно взятых видов бумаг портфелей. Дополнительно в статье проводится экспериментальная проверка адекватности выбранной модели управления и, кроме того, теоретическое обоснование используемой модели ценообразования.

Перейдем к построению системы управления, занимающей длинную позицию для инвестиционного портфеля, включающего в себя несколько видов ценных бумаг и наличные деньги.

Введем в рассмотрение понятие стоимости портфеля, включающего в себя $\,n\,$ видов ценных бумаг и определяемую f_t на момент времени t. Указанная величина определяется соотношением

Сергей Анатольевич ВАВИЛОВ — д-р физ.-мат. наук, профессор кафедры общей математики и информатики математико-механического факультета СПбГУ. Окончил математико-механический факультет ЛГУ (1978). С 1991 по 1997 г. работал в Университете г. Делфт (Нидерланды). Автор 75 научных и методических работ. Область научных интересов — методы прикладного функционального анализа, теория бифуркаций, управление инвестиционным портфелем на основе стохастической модели ценообразования.

Константин Юрьевич ЕРМОЛЕНКО — канд. экон. наук, ст. преподаватель кафедры экономической кибернетики СПбГУ. В 2000 г. окончил экономический факультет СПбГУ. В 2004 г. защитил кандидатскую диссертацию. Сфера научных интересов — управление инвестиционным портфелем, оценка бизнеса, инструментальные методы организации торговых систем. Автор пяти научных публикаций.

© С. А. Вавилов, К. Ю. Ермоленко, 2007

$$f_t = \sum_{i=1}^{n} a_{ti} x_{ti} + w_t , \qquad (1)$$

где a_{i} – количество ценных бумаг i-го вида; w_{i} – количество денег в портфеле; x_{i} – текущая цена бумаги i-го вида.

Зададим торговую стратегию, определяющую на каждый момент времени количество бумаг в портфеле, следующей зависимостью:

$$d f_t = \sum_{i=1}^n a_{ti} d x_{ti} + l(t, x_{t1}, \dots, x_{tn}) d t.$$
 (2)

Построение управляющей функции $l(t, x_{t1}, ..., x_{tn})$, обеспечивающей асимптотический во времени рост стоимости капитала, является конечной целью решения поставленной задачи, при этом прирост стоимости капитала \tilde{p}_t вдоль наблюдаемых значений цен $\tilde{x}_{t1}, ..., \tilde{x}_{tn}$ задается формулой

$$\widetilde{p}_t = \widetilde{f}_t - \int_0^t l(t, \widetilde{x}_{\tau 1}, \dots, \widetilde{x}_{\tau n}) d\tau , \qquad (3)$$

где \widetilde{f}_t — величина стоимости портфеля вдоль наблюдаемого значения цен, при этом интеграл в правой части соотношения (3) понимается в обычном римановском смысле и соответствует общему объему инвестируемых в портфель денежных средств. Асимптотический во времени рост стоимости капитала означает выполнение условия $\widetilde{p}_t \to +\infty$ при $t \to +\infty$.

Пусть выполняются следующие предположения:

1. Изменение цены i-й бумаги x_{ii} следует стохастическому дифференциальному уравнению

$$dx_{ii} = c_{ii}x_{ii}dt + \sigma_{ii}x_{ii}dW_{ii}, \tag{4}$$

где W_{ii} — независимые стандартные винеровские процессы, а мгновенные изменения трендовой составляющей цены c_{ii} и значения волатильностей σ_{ii} в шумовых составляющих цен необязательно должны быть наблюдаемыми и, соответственно, подлежать идентификации. Здесь предполагается, что σ_{ii} есть только функции времени, не зависящие от x_{ii} .

- 2. Наблюдаемые значения цен \tilde{x}_{ti} на любом заранее заданном временном интервале должны быть отделены от нуля некоторой отличной от нуля постоянной.
- 3. Волатильности σ_{ii} могут становиться меньше некоторого строго положительного порогового значения только на ограниченных промежутках времени.
- 4. В случае необходимости существует возможность дополнительно инвестировать в портфель требуемые денежные средства.

Суть утверждения заключается в том, что при выполнении условий 1-4 можно построить управление портфелем, обеспечивающее асимптотический во времени рост капитала, при этом существенно отметить, что само управление $l(t,\widetilde{x}_{t1},\ldots,\widetilde{x}_{n})$ не зависит явным образом от коэффициентов c_{i} и σ_{i} из соотношения (4).

Отметим, что сформулированные выше предположения 3 и 4 будут в дальнейшем уточнены на количественном уровне.

Перейдем к доказательству сформулированного утверждения.

Применяя к функции $f_t = f(t, x_{t1}, ..., x_m)$, где x_{ti} удовлетворяют (4), формулу Ито и сравнивая ее с соотношением (2), получим

$$\frac{\partial f}{\partial t} + \frac{1}{2} \sum_{i=1}^{n} \sigma_{ti}^2 x_{ti}^2 \frac{\partial^2 f}{\partial x_{ti}^2} = l(t, x_{t1}, \dots, x_{tn}),$$
 (5)

$$a_{ti} = \frac{\partial f}{\partial x_{ti}}. (6)$$

Для удобства вычислений, без потери общности и с использованием соответствующей нормировки, вытекающей из второго предположения, будем полагать, что значения \widetilde{x}_{ti} принадлежат интервалу (1, β_i), где $\beta_i > 1$. В дальнейшем границы указанной открытой полосы будем называть соответственно нижним и верхним порогом чувствительности.

Введем в рассмотрение $\phi_i(x)$, которая является собственной функцией, соответствующей первому собственному числу λ_{ij} следующей задачи Штурма—Лиувилля:

$$\frac{d^2 \varphi_i}{d x^2} + \frac{\lambda_{1i}^2}{x^2} \varphi_i = 0, \qquad (7)$$

$$\varphi_{i}(1) = \varphi'_{i}(\beta_{i}) = 0.$$
 (8)

Управление $l(t, x_{t1}, ..., x_{tn})$ зададим через вспомогательную функцию $v(t, \widetilde{x}_{t1}, ..., \widetilde{x}_{tn})$

$$l(t, x_{t1}, ..., x_{tn}) = \frac{v(t, \tilde{x}_{t1}, ..., \tilde{x}_{tn})}{\prod_{i=1}^{n} \varphi_i(\tilde{x}_{ti})} \prod_{i=1}^{n} \varphi_i(x_{ti}).$$
(9)

Таким образом, $l(t, \widetilde{x}_{t1}, ..., \widetilde{x}_{tn}) = v(t, \widetilde{x}_{t1}, ..., \widetilde{x}_{tn})$. На начальный момент управления t=0 портфель будем считать пустым, т. е. не содержащим ни денег, ни бумаг и, соответственно,

$$f(0, x_{t1}, ..., x_{tn}) = 0.$$
 (10)

Кроме того, зададим следующие граничные условия:

$$\frac{\partial f}{\partial x_{.i}} \to 0 \text{ при } x_{ti} \to \beta_i$$
, (11)

$$f(t, x_{t1}, ..., x_{ti}, ..., x_{ti}) \to 0$$
 при $x_{ti} \to 1$. (12)

В силу соотношения (6) выполнение граничного условия (11) означает, что система управления стремится полностью избавиться от тех акций, цена которых приближается к верхнему порогу чувствительности. Для пояснения граничного условия (12) выпишем соотношение, непосредственно вытекающее из формул (1), (2),

$$w_t = -\sum_{i=1}^n \int_0^t x_{\tau+d\tau,i} d \, a_{\tau i} + \int_0^t l(\tau, x_{\tau 1}, \dots, x_{\tau n}) d\tau.$$
 (13)

Второе слагаемое в данной зависимости соответствует инвестируемому денежному потоку, первое слагаемое, взятое со знаком минус, характеризует изменение стоимости акций с учетом осуществляемых спекуляций. Поэтому смысл граничного условия (12) заключается в том, что при стремлении цены одного из видов ценных бумаг к нижней границе полосы чувствительности все высвободившиеся в результате спекуляций наличные деньги вкладываются в данный вид ценных бумаг.

Записывая решение смешанной задачи (10)—(12) для уравнения (5), где $l(t, x_{t1}, ..., x_{tm})$ определяется соотношением (9), получим

$$f(t, x_{t1}, ..., x_{tn}) = \int_{0}^{t} e^{\frac{1}{2} \sum_{i=1}^{n} \sum_{\tau}^{2} \sum_{i=1}^{l} \sigma_{si}^{2} ds} \cdot \frac{v(\tau, \widetilde{x}_{\tau1}, ..., \widetilde{x}_{\tau n})}{\prod_{i=1}^{n} \varphi_{i}(\widetilde{x}_{\tau i})} d\tau \cdot \prod_{i=1}^{n} \varphi_{i}(x_{t}),$$
(14)

при этом $\varphi(x_{ti}) = \sqrt{x_{ti}} \sin(b_i \ln x_{ti})$, $\lambda_{1i}^2 = b_i^2 + \frac{1}{4}$, а b_i является минимальным строго положительным корнем уравнения

$$tg(b_i \ln \beta_i) = -2b_i. \tag{15}$$

Отметим, что в соотношениях (14), (15) используется явный вид решения задачи (7), (8), при этом выбор соответствующих первых собственных чисел обеспечивает отличие от нуля соответствующих собственных функций внутри указанных интервалов.

Введем в рассмотрение новую управляющую функцию $u(t, x_{t1}, ..., x_{tn})$, исходя из соотношения

$$u(t, x_{t1}, ..., x_{tn}) = e^{\frac{1}{2} \sum_{i=1}^{n} \lambda_{1i}^{2} \int_{\tau}^{t} \sigma_{si}^{2} ds} \cdot v(t, x_{t1}, ..., x_{tn}),$$
(16)

и, используя зависимость (3), непосредственно получим формулу, определяющую изменение стоимости капитала вдоль наблюдаемых значений цен $\widetilde{x}_{t1},...,\widetilde{x}_{tn}$:

$$\widetilde{p}_{t} = \int_{0}^{t} \frac{u(\tau, \widetilde{x}_{\tau 1}, \dots, \widehat{x}_{\tau n})}{\prod\limits_{i=1}^{n} \varphi_{i}(\widetilde{x}_{\tau i})} d\tau \cdot \prod_{i=1}^{n} \varphi_{i}(\widetilde{x}_{t i}) - \int_{0}^{t} e^{-\frac{1}{2} \sum_{i=1}^{n} \lambda_{1 i}^{2} \int_{\tau}^{t} \sigma_{s i}^{2} ds} \cdot u(\tau, \widetilde{x}_{\tau 1}, \dots, \widetilde{x}_{\tau n}) d\tau.$$

$$(17)$$

Кроме того, исходя из формулы (6), нетрудно определить количество бумаг i-го вида, которое необходимо иметь в портфеле при наблюдаемых значениях цен

$$\widetilde{a}_{ti} = \int_{0}^{t} \frac{u(\tau, \widetilde{x}_{\tau 1}, \dots, \widetilde{x}_{\tau n})}{\prod_{i=1}^{n} \varphi_{i}(\widetilde{x}_{\tau i})} d\tau \cdot \frac{\partial}{\partial x_{ti}} \prod_{i=1}^{n} \varphi_{i}(x_{ti}) \Big|_{x_{t1} = \widetilde{x}_{t1}, \dots, x_{tn} = \widetilde{x}_{tn}}.$$
(18)

Заметим, что если управление $u(t, \tilde{x}_{t1}, ..., \tilde{x}_{n})$ является любой ограниченной неотрицательной ступенчатой функцией, принимающей значения меньше некоторого порогового только на ограниченных промежутках времени, то первое слагаемое в формуле (17) положительное и неограниченно растет с ростом t, в то время как второе по модулю не превышает некоторой постоянной величины в силу ограничения, налагаемого на волатильности ценных бумаг, и вытекающего из третьего предположения.

Обратим внимание, что в соотношение (18) не входят не только c_{ii} из уравнения (4), но и волатильности σ_{ii} . Таким образом, для построения искомого управления нет необходимости идентифицировать указанные величины, хотя, как видно из соотношения (17), увеличение волатильностей ведет к существенному росту стоимости капитала.

Таким образом, на основе сделанных выше предположений 1–4 построена система управления инвестиционным портфелем, обладающая заданными свойствами.

Перейдем к рассмотрению вопроса о необходимом количестве инвестируемых средств и времени выхода системы управления на режим насыщения. Напомним, что режим насыщения обусловлен тем, что за счет прибыли, полученной в результате

многочисленных спекулятивных сделок, совершаемой системой управления, эта система становится самодостаточной, т. е. не требует привлечения дополнительных денежных средств для продолжения дальнейшей работы.

Как было показано в одной из опубликованных ранее работ авторов², накопленные волатильности с ростом времени для широкого класса высоколиквидных ценных бумаг могут аппроксимироваться линейными зависимостями

$$\int_{0}^{t} \sigma_{\tau i}^{2} d\tau \approx \alpha_{i} \cdot t \,, \tag{19}$$

где α_i – априори известные на момент времени t=0 величины.

Отметим, что выполнение соотношений (19) по существу является результатом известной эргодической теоремы Биркхофа–Хинчина ³.

Поскольку второе слагаемое в формуле (17) представляет собой поток инвестируемых денежных средств, то на основании соотношений (19) данная величина, при постоянной функции управления u_0 , может быть определена, исходя из следующей зависимости:

$$V \approx \frac{2 \cdot u_0}{\sum_{i=1}^{n} \lambda_{1i}^2 \cdot \alpha_i}.$$
 (20)

При этом характерный временной масштаб выхода на режим насыщения задается формулой

 $T \approx \frac{2}{\sum_{i=1}^{n} \lambda_{1i}^{2} \cdot \alpha_{i}}.$ (21)

Таким образом, задаваемое время инвестирования определяет через λ_{1i}^2 , в силу формулы (21), выбор ширины коридоров для бумаг каждого вида. В свою очередь, значение управляющей функции u_0 вычисляется исходя из формулы (20), при задаваемом объеме инвестируемых средств V.

Заметим, что увеличение числа видов ценных бумаг в портфеле, согласно формуле (17), ведет к более интенсивному наращиванию стоимости капитала.

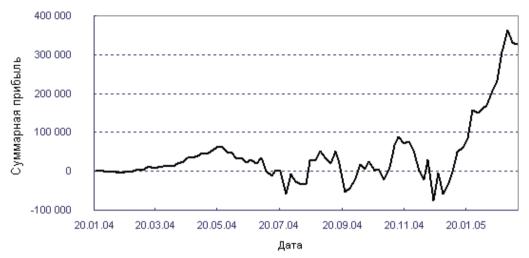
Анализируя соотношение (17), нетрудно также заметить, что при выполнении условий 1-4 и дополняющих их количественных зависимостей (19), можно ввести в рассмотрение понятие гарантированного времени выхода T^* системы управления на положительную доходность, при этом имеет место оценка

$$T^* < \frac{2}{\sum\limits_{i=1}^{n} \lambda_{1i}^2 \cdot \alpha_i} \prod_{i=1}^{n} \sqrt{\beta_i} . \tag{22}$$

В качестве примера рассмотрим два инвестиционных портфеля, первый из которых содержит только акции РАО «ЕЭС России», второй — «Сургутнефтегаза». В каждый портфель инвестируется по 1 млн руб. в течение года. Исходя из соотношений (20), (21) в случае, когда портфель содержит только один вид ценных бумаг (n=1), рассчитывается ширина полосы, определяющая нижний и верхний пороги чувствительности, а также значение управляющей функции u_0 для каждой акции в отдельности. Как было показано в упоминавшейся выше статье⁴, накопленная волатильность на временных интервалах, близких к одному году, для широкого класса высоколиквидных акций является, по существу, инвариантом и составляет около 20%. Тогда ценовой коридор по каждой

отдельной бумаге соответствуют 50% отклонения от значения начальной цены акции. При этом величина $T^* < 1,7$ года характерна для инвестиционного портфеля, содержащего только один вид акций.

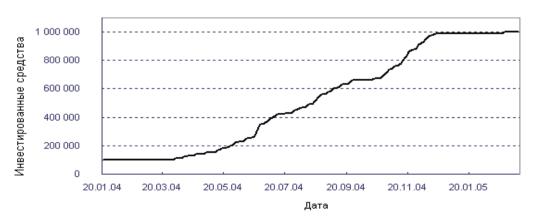
На рис. 1 приведен график суммарной прибыли, получаемой в результате работы двух независимых систем управления за период с 20 января 2004 по 11 марта 2005 г.



Источник: Котировки РТС (www.vts.ru).

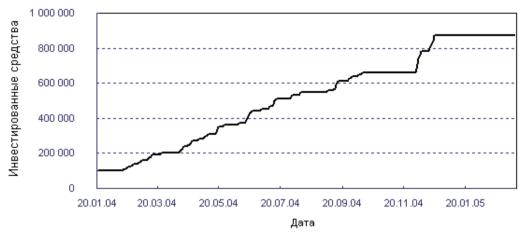
Puc.~1. Динамика суммарной прибыли, получаемой в результате работы двух независимых систем управления за период с 20 января 2004 по 11 марта 2005 г.

На рис. 2, 3 изображена динамика поступления инвестируемых средств соответственно в первый и второй портфели.



Источник: Там же.

Puc. 2. Динамика поступления инвестируемых средств в портфель, состоящий из акций PAO «ЕЭС России».



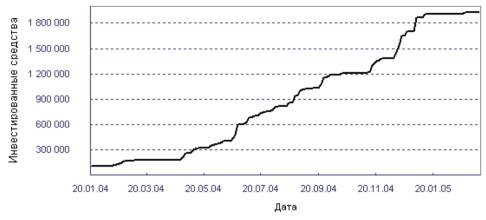
Источник: Там же.

Рис. 3. Динамика поступления инвестируемых средств в портфель, состоящий из акций «Сургутнефтегаза».

Наряду с указанными портфелями введем в рассмотрение третий портфель, содержащий два вида упомянутых акций и управляемый на основе схемы, предложенной в настоящей работе. Нижние и верхние пороги чувствительности выбираются такими же, как и в каждом из двух независимо управляемых портфелей. Объем инвестиций составляет при этом 2 млн руб., и значение управляющей функции u_0 рассчитывается на основе формулы (20). На рис. 4 представлен график изменения прибыли, получаемой в результате работы системы управления, рассмотренной в настоящей статье. Соответственно на рис. 5 изображена динамика поступления инвестируемых средств в описанный комбинированный портфель.

Источник: Там же.

Puc. 4. Динамика изменения прибыли, получаемой в результате работы системы управления комбинированным портфелем.



Источник: Там же.

Рис. 5. Динамика поступления инвестируемых средств в комбинированный портфель.

Сравнивая представленные рисунки, нетрудно убедиться, что в соответствии с теоретическими выводами величина прибыли комбинированного портфеля существенно больше, чем в случае, когда деньги инвестируются поровну в каждый из двух независимо управляемых портфелей.

В таблице приведен протокол работы системы управления комбинированным портфелем за период с 23 января по 27 марта 2004 г.

Протокол работы системы управления комбинированным портфелем за период с 23 января по 27 марта 2004 г.

Дата	Время	Цена EESR	Портфель EESR	Цена SNGS	Портфель SNGS	Чистая прибыль	Доходность, % год	Свободные средства
1	2	3	4	5	6	7	8	9
23.01.04	15:30	9.364	0	17.34	0	0.00	0.00	90 254.00
26.01.04	11:45	9.110	300	17.00	400	-227.13	-2.07	79 810.00
29.01.04	17:00	9.348	700	17.31	800	181.04	1.65	68 349.60
01.02.04	12:00	9.045	1000	17.05	1300	-470.50	-3.12	57 007.10
04.02.04	16:30	8.780	1500	16.71	1700	-1452.13	-9.64	43 383.10
07.02.04	17:30	8.919	2100	16.37	2200	-1923.05	-8.26	28 503.30
10.02.04	11:45	8.463	2300	16.08	3000	-3849.96	-15.61	16 908.90
13.02.04	11:45	8.605	3100	16.34	3300	-2563.99	-8.91	9447.40
16.02.04	15:30	8.795	3800	16.94	4000	548.34	1.67	5635.40
19.02.04	13:00	9.080	4600	17.25	4400	3214.83	8.09	3469.40
22.02.04	16:45	8.822	4800	16.97	5000	573.54	1.40	2202.70
25.02.04	12:00	9.220	5500	17.23	5300	4107.20	8.33	1457.60
29.02.04	14:00	8.965	5300	16.93	6200	906.35	1.84	7187.90
03.03.04	17:30	9.114	6000	18.44	6500	11 555.21	21.63	19 325.90

1	2	3	4	5	6	7	8	9
06.03.04	16:00	8.956	7500	17.72	5100	6708.82	11.13	8042.70
09.03.04	11:45	9.100	7700	18.58	6200	13 135.42	19.18	13 768.70
12.03.04	14:15	8.897	8500	18.86	5500	12 929.10	16.85	10 742.40
15.03.04	12:30	8.740	9900	19.24	5000	13 256.19	16.98	11 099.70
18.03.04	11:45	8.883	11400	19.65	4300	16 649.70	20.96	13 253.10
21.03.04	15:15	9.026	11600	20.00	4100	19 731.87	24.83	16 350.10
24.03.04	16:15	9.184	11700	20.32	3900	22 830.71	28.25	24 282.90
27.03.04	14:00	9.003	11500	20.02	3600	19 637.27	22.75	4372.10

Для проверки адекватности выбранной модели управления сравним значение теоретической прибыли, получаемой на основе формулы (17), и реальной прибыли, вычисляемой исходя из фактического числа акций, имеющихся в портфеле, в соответствии с формулой (18). Отметим, что теоретическая и реальная прибыли вычисляются на основе цен, масштабированных для акций каждого отдельного вида на соответствующий нижний порог чувствительности. На рис. 6 дано сравнение масштабированной теоретической и реальной прибыли, получаемой при управлении комбинированным портфелем.

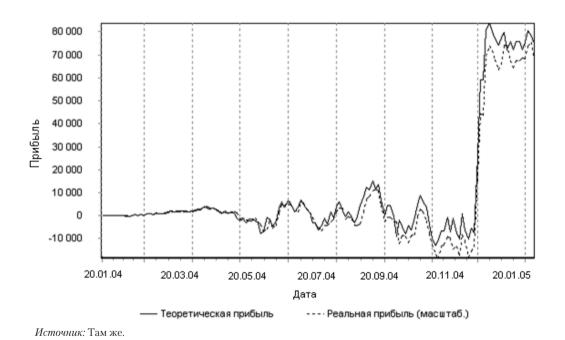


Рис. 6. Динамика изменения масштабированной теоретической и реальной прибыли, получаемой в результате работы системы управления комбинированным портфелем.

Отметим, что адекватность выбранной модели управления подтверждается не только сравнением теоретических и экспериментальных данных. Так, предположение о том, что волатильности σ_{ii} не зависят от случайных процессов x_{ii} , имеет определенное теоретическое обоснование, приводимое ниже.

Зададимся моделью ценообразования $x_{t} = \exp(h_{t})^{5}$, где x_{t} соответствует цене отдельно взятой акции, а h_{t} представляет собой процесс авторегрессии любого конечного порядка. Рассмотрим непрерывный аналог данной модели. Зададим h_{t} в следующем виде:

$$h_{t} = c_{1}h_{t-\Lambda} + c_{2}h_{t-2\Lambda} + \dots + c_{n}h_{t-n\Lambda} + \varepsilon_{t}, \tag{23}$$

где $\varepsilon_{_{\!f}}$ – белый шум, а Δ – заданный временной интервал. Как хорошо известно 6 , соотношение (23) может быть переписано в конечных разностях

$$a_1 \nabla^n h_t + a_2 \nabla^{n-1} h_t + \dots + a_n \nabla h_t + a_{n+1} h_t = \varepsilon_t , \qquad (24)$$

где a_i — некоторые коэффициенты, определяемые через c_i , при этом $\nabla^{k+1}h_t=\nabla(\nabla^k h_t)$ и $\nabla h_t=h_t-h_{t-\Delta}$.

Запишем непрерывный аналог разностного уравнения (24)

$$a_1 \Delta^n \frac{d^n h_t}{dt^n} + a_2 \Delta^{n-1} \frac{d^{n-1} h_t}{dt^{n-1}} + \dots + a_n \Delta \frac{d h_t}{dt} + a_{n+1} h_t = \varepsilon_t.$$
 (25)

Решение задачи Коши для уравнения (25) на интервале [0, t] может быть представлено в виде

$$h_t = \varphi(t) + \int_0^t G(t - s) dW_s , \qquad (26)$$

где $\phi(t)$ – некоторая детерминированная функция, а G(t-s) – неслучайная передаточная функция, представляющая собой подынтегральное выражение в соответствующем интеграле Ито. Зафиксируем t и для удобства введем новое обозначение F(s) = G(t-s). Поскольку F(s) — детерминированная функция, имеет место формула интегрирования по частям для интеграла Ито в выражении (26). Таким образом, справедливы следующие преобразования:

$$\int_{0}^{t} G(t-s)dW_{s} = \int_{0}^{t} F(s)dW_{s} = F(t)W_{t} - \int_{0}^{t} W_{s} \dot{F}(s)ds =$$

$$= G(0)W_{t} + \int_{0}^{t} W_{s} \dot{G}(t-s)ds = G(0)\int_{0}^{t} dW_{s} + \int_{0}^{t} W_{s} \dot{G}(t-s)ds,$$
(27)

которые приводят к соотношению

$$d \begin{bmatrix} \int_{0}^{t} G(t-s)dW_{s} \end{bmatrix} = G(0)dW_{t} + W_{t} \dot{G}(0)dt + \begin{cases} \int_{0}^{t} W_{s} \dot{G}(t-s)ds \\ 0 \end{cases} dt.$$
 (28)

Окончательно, с использованием выражения (23), получаем стохастическое представление для h_i

$$d h_{t} = \begin{bmatrix} \vdots & \vdots & \vdots \\ \varphi(t) + W_{t} G(0) + \int_{0}^{t} W_{s} G(t-s) ds \end{bmatrix} dt + G(0) dW_{t}.$$
 (29)

Применяя к зависимости $x_t = \exp(h_t)$ формулу Ито, непосредственно получим

$$d x_{t} = \left\{ \left[\dot{\varphi}(t) + W_{t} \, \dot{G}(0) + \int_{0}^{t} W_{s} \, \dot{G}(t-s) \, d \, s \right] + \frac{1}{2} G^{2}(0) \right\} x_{t} d \, t + G(0) x_{t} d \, W_{t} \,, \tag{30}$$

что в точности соответствует стохастическому уравнению

$$dx_t = c_t x_t dt + \sigma_t x_t dW_t, \tag{31}$$

где
$$c_t = \dot{\varphi}(t) + W_t \dot{G}(0) + \int_0^t W_s \dot{G}(t-s) ds + \frac{1}{2} G^2(0), \sigma_t = G(0).$$

Таким образом, волатильность σ_t не зависит от W_t и, следовательно, от x_t . Соответственно, когда изменяется число слагаемых или коэффициентов, входящих в уравнение авторегрессии, имеет место скачкообразное изменение значения волатильности $\sigma_t = G(0)$.

При практической реализации стохастических систем управления, по существу, возникает два вида рисков:

- 1) выход значений цен акций, составляющих инвестиционный портфель, из априори выбранных ценовых коридоров;
- 2) существенное уменьшение суммы значений накопленных волатильностей по всем акциям, составляющим инвестиционный портфель, на всем периоде инвестирования, ниже априори заданной величины.

В случае нереализации указанных рисков за временной период, определяемый формулой (22), происходит гарантированный выход системы управления на положительную доходность.

Эффективное управление рисками при этом осуществляется приобретением опционов пут со страйками, близкими к значению нижних порогов чувствительности.

В заключение отметим, что наличие в портфеле нескольких видов ценных бумаг приводит к определенной специфике при реализации соответствующего управления на практике. Дело в том, что в случае, когда система управления совершает операции одновременно с несколькими видами акций, возможно выставление только рыночных заявок (market order). Иначе возможна ситуация, когда заявка будет выполнена по одному виду ценных бумаг и не будет выполнена по другому, что может привести к сбою работы системы управления в целом.

Статья поступила в редакцию 19 апреля 2007 г.

¹ Вавилов С. А., Ермоленко К. Ю. Стохастические системы управления портфелем ценных бумаг // Вестн. С.-Петерб. ун-та. Сер. 5: Экономика. 2003. Вып. 3. С. 113–122.

² Вавилов С. А., Ермоленко К. Ю. Метод определения одной интегральной характеристики для волатильностей в задаче управления инвестиционным портфелем // Вестн. С.-Петерб. ун-та. Сер. 5: Экономика. 2005. Вып. 1. С. 114−124.

³ Гнеденко Б. В. Курс теории вероятностей. М., 1969. С. 341.

⁴ Вавилов С. А., Ермоленко К. Ю. Метод определения одной интегральной характеристики для волатильностей в задаче управления инвестиционным портфелем.

⁵ Vavilov S. A. On the probability models to control the investor portfolio. In the book: Asymptotic methods in probability and statistics with applications. Boston; Basel; Berlin, 2001. P. 535–546.

 $^{^6}$ Бокс Дж., Дженкинс Г. Анализ временных рядов: прогноз и управление. М., 1972.