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The paper proposes a bootstrap methodology for estimating cost efficiency in data envelop-
ment analysis. We consider the conventional concept of Fare, Grosskopf and Lovellcost ef-
ficiency, for which our algorithm re-samples “naive” input-oriented efficiency scores, rescales 
original inputs to bring them to the frontier, and then re-estimates cost efficiency scores for 
the rescaled inputs. Next, we examine Tone cost efficiency, where input prices vary across 
producers. Here we show that the direct modification on bootstrap algorithms by Simar and 
Wilson are applicable. We consider cases both with the absence and presence of environmen-
tal variables (i.e. input variables not directly controlled by firms). The bootstrap methodology 
exploits these assumptions: 1) the sample are i.i.d. random variables with the continuous joint 
probability density function with support over production set; 2) the frontier is smooth; and 
3)  the probability of observing firms on the frontier approaches unity with an increase in 
sample. The results of simulations for a multi-input, multi-output Cobb–Douglas production 
function with correlated outputs, and correlated technical and cost efficiency, show consist-
ency of our proposed algorithm, even for small samples. Finally, we offer real data estimates 
for the Japanese banking industry in 2013. Our package “rDEA,” developed in the R language, 
is available from the GitHub and CRAN repository.
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Introduction

Data envelopment analysis (DEA) was introduced in [Charnes, Cooper, Rhodes, 
1978] as a linear optimization technique, stemming from the seminal work of [Farrell, 
1957], who defined a firm’s technical and price efficiency and proposed a method for con-
structing a frontier as a linear convex hull surface to envelop observations. The efficiency 
scores of each firm are estimated according to the distance from the empirical frontier, 
which is treated as fully efficient firms. The analysis is based on common premises about 
production: monotonicity of technology, requirement of inputs for production (“no free 
lunch” condition), closedness, and strict convexity of the production set [Simar, Wilson, 
2000b]. However, the empirical frontier may fail to incorporate unobservable but very 
efficient firms [Simar, Wilson, 1998]. Thus, the efficiency scores, linked to the empirical 
frontier, are upwardly biased. Standard approaches for consistent correction of bias in the 
case of technical efficiency scores are a homogeneous bootstrap based on re-sampling 
from a smooth consistent estimator of the joint density of input-output pairs, or a semi-
parametric bootstrap in the presence of additional inputs, i.e. so-called environmental 
variables, which are not directly controlled by producers [Simar, Wilson, 2000b; Simar, 
Wilson, 1998; 2007]1. The bootstrap methodology exploits these assumptions about the 
data-generating process for observations of firms, which enable a consistent approxima-
tion of the unknown distribution of efficiency scores: 1) the sample is i.i.d. random vari-
ables with a continuous joint probability density function with support over the produc-
tion set; 2) the frontier is smooth; and 3) the probability of observing firms on the frontier 
approaches unity with an increase in sample size (see [Kneip, Simar, Wilson, 2008; Simar, 
Wilson, 2000b]).

Concerning cost minimization DEA, as formulated in [Fare, Grosskopf, Lovell, 1985, 
practitioners suggest a direct modification of the [Simar, Wilson, 1998; 2007] bootstrap 
(e.g. [Borger, Kerstens, Staat, 2008]).

In this paper we show that a direct modification the [Simar, Wilson,1998; 2007] boot-
strap is inconsistent for cost minimization DEA, and we propose an alternative algorithm. 
The proposed algorithm re-samples “naive” input-oriented efficiency scores, rescales orig-
inal inputs to bring them to the frontier, and then re-estimates cost efficiency scores for 
the rescaled inputs. The results of the simulations for a multi-input, multi-output Cobb–
Douglas production function with correlated outputs, and correlated technical and cost 
efficiency, show consistency of our proposed algorithm, even for small samples. As for a 
recently defined “new” cost efficiency [Tone, 2002], which to the best of our knowledge is 
commonly assessed only in terms of naïve scores, we demonstrate that the direct modi-
fication of the [Simar, Wilson, 1998; 2007] bootstrap is consistent. Finally, we apply the 
algorithm to real data from 106 Japanese banks for fiscal year 2013.

The remainder of the paper is structured as follows. Section 1 reviews the theoretical 
framework for bias correction of technical efficiency scores, using an example of input 
orientation. Section 2 demonstrates the inconsistency of a direct application of [Simar, 
Wilson, 1998; 2007] bootstrap and offers an alternative bootstrap algorithm for robust 
estimation of [Fare, Grosskopf, Lovell, 1985] cost efficiency in absence and in presence 

1  In the absence of environmental variables, the smooth bootstrap provides a better inference in 
a non-simulation context [Kneip, Simar, Wilson, 2008] than an alternative bootstrap based on subsampling 
[Simar, Wilson, 2011a].
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of environmental variables. Section 3conducts simulations of production frontier and 
technical and cost ineffi  ciencies. Section 4provides real data estimates with a nationwide 
sample of Japanese banks. Th e Appendix sets up the microeconomic framework for esti-
mating technical and cost ineffi  ciencies. Our computations are conducted with an R pack-
age “rDEA” [Simm, Besstremyannaya, 2016], which is available from GitHub and CRAN 
repositary.

1. Es timates of input-oriented effi  ciency

1.1.  Naive score

Denote the estimator of existing technology (of the production set), which produces 
outputs ym(m = 1,…,M) using inputs xn(n = 1,…,N) as 
where effi  ciency for a given unit (x, y)  is measured relative to the boundary of the convex 
hull (X, Y) under the assumption of constant returns to scale. Input set L(y) [Coelli, Rao, 
Battese,1994; Shephard,1981] contains inputs that can produce a given amount of output, 
so that L(y) = {(x) : (x, y)  T}. Th e technology satisfi es common premises about inputs, 
outputs, and the production set, which were briefl y outlined in the Introduction. Th e im-
portant assumptions about the production process are strict convexity of L(y) and strong 
(free) disposability of inputs and outputs. In particular, strong disposability of inputs im-
plies that if x  L(y), and if x ≥ x, then x  L(y). Th e input-oriented effi  ciency θj for a given 
fi rm j (j = 1, …, J) is defi ned as a solution to the optimization problem below (constant 
returns to scale, CRS  formulation of [Charnes, Cooper, Rhodes, 1978]:

 ,
min

j
j 



 1
. . 0,   1, , ,

J

mj i mi
i

s t y y m M


       (1)

1
0,   1, , ,

J

j nj i ni
i

x x n N 


   

0,   1, , i i J    .

Additional constraints 
1

1
J

i ni
i

x


  impose variable returns to scale (VRS).

It should be noted that system (1) represents a linear maximization program written 
in concise notation. In fact, for each fi rm j there is a set of M constraints, where each con-
straint corresponds to a particular output ymj. Similarly, there are N constraints on each 
input xnj.

Th e economic intuition behind the system (1) may be explained as follows. We ex-
amine the behavior of economic agents and construct the production possibility set, us-
ing inputs and outputs for each agent. Th e analysis focuses on minimizing the amount of 
inputs required to produce a given amount of output; therefore, the problem is called “in-
put-oriented DEA”. Th e boundary of the production possibility set becomes the produc-
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tion possibility frontier. Th us, the unity values of θj imply that the agent is fully effi  cient, 
as these points lie on the non-linear hull of observations (i. e. on the empirical estimate 
of the production possibility frontier). Th e weights λi in system (1) are exploited for the 
construction of the frontier.

Another optimization problem, called “output-oriented DEA,” studies the maximi-
zation of the output under a given amount of inputs. Th e reciprocals of effi  ciency scores 
become the multipliers of the output coordinates:

 ,
min

j
j 



 1
. . / 0,   1, , ,

J

mj j i mi
i

s t y y m M 


      (1a)

1
0,   1, , ,

J

nj i ni
i

x x n N


   

0,   1, , i i J    .

Output-oriented DEA may be used to a nalyze the behavior of such economic agents 
as municipal hospitals, which have diffi  culties increasing the amount of inputs (medical 
personnel) and hence are analyzed in terms of their ability to maximize outputs (number 
of treated patients, see [Besstremyannaya, 2013]).

In this paper we focus on an input-oriented DEA when proposing our estimations of 
bias-corrected cost effi  ciency. Note, however, that the bottstrap algorithm may be straight-
forwardly modifi ed for using the output-oriented score at the fi rst stages.

1.2. Bias correction of naive DEA score

Th e estimates of input-oriented effi  ciency are upwards biased, since the estimated 
boundary ˆ ( )L  y  of the input set is based on the sample of observed units, which may fail 
to incorporate the most effi  cient units in the true L(y) [Simar, Wilson 1998; 2000]. Th e 
bootstrap methods were proposed in [Simar, Wilson, 1998] and the assumptions about 
the data-generating process are further explained in [Simar, Wilson, 2000b; Kneip, Simar, 
Wilson, 2008].Th e bootstrap corrects for the bias by constructing pseudo-samples that 
would belong to ˆ( )L y . Th e central idea for using the bootstrap is an assumption that the 
empirical bootstrap distribution of the DEA effi  ciency score consistently estimates the 
sampling distribution, and the assumption is ensured with the use of smoothing tech-
niques [Simar, Wilson, 2000a]. Th en, according to the re-centering idea of bootstrap,
bias ˆ ˆ( )i i iE    . So the estimator of the bias becomes bbias ias * *( )ˆ ˆ ˆ ˆ

i i ii E      . In
particular, the homogeneous smoothed bootstrap projects each observation on the fron-

tier and then “pushes” it inside the ˆ( )L y  [Simar, Wilson, 2008; 1998].
1. Estimate naive scores 1,..ˆ ˆ., J  , for each 1,...,i J  according to system (1). Assume 

(θ1,…θJ) are i.i.d. with pdf f (.).

2. Loop B times to obtain J sets of bootstrap estimates *
1{ }ˆ B

ib b  .
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1. Obtain a smooth estimate ˆ( )f   and for each 1,...,i J  draw *
ib  from this

estimate2.
2. Assume homogeneous distribution of joint density of   in input-output space,

i.e. ( |( , ( )ˆ)ˆ
i i i if f x y  and assign *

*
î

ib i
ib


x x .

3. Calculate *
îb  for *( , )ib ix y .

3. bias *

1

ˆ̂ ˆ1 ˆB

i ib i
bB

  


   and bias-corrected score biasˆ ˆ ˆ̂ˆ
i i i    .

Rescaling at step (2.2) guarantees that pseudo-samples *
1

ˆ{( , )} ( )B
ib i b L x y y .  Indeed, 

input-oriented effi  ciency evaluates the potential of DMUi for maximal reduction of in-
puts, holding the amount of outputs constant. Th e constraints xi ≥ Xλ  imply inputs are 
larger than possible. Th erefore, multiplication of each input by î , 0 1î  ,   projects it to 
ˆ ( )L  y  , so that the projected observation become an estimate of an effi  cient input level 

with coordinates ( ˆ , )i i i x y . Th e assumption about homogeneous distribution of joint den-
sity of θ allows drawing each *

ib  for pseudo-samples from the same estimate of
ˆ( )f  , which is obtained for the original sample. Th erefore, division of each projected in-

put by * *,0 1ib ib    in step (2.2) “pushes” the projected input inside ˆ ( )L y .
In presence of an r-dimensional vector of environmental variables z , i.e. a special 

type of inputs that are not directly controlled by producers, [Simar, Wilson, 2007] propose 
a semi-parametric bootstrap for correcting the bias of the distance function score δ, the 
reciprocal of θ 3. Th e algorithm, in the case of input-orientation, is based on the premise 
about the separability of inputs and environmental variables, i.e. the fact that the support 
of x does not depend on z  [Simar, Wilson, 2011b].

1. Estimate the naïve distance function scores 1,..ˆ ˆ., J  , for each 1,...,i J  using the 
equivalent of system (2) for reciprocals of  . Assume, 1 i i i   z â where i  
are i. i. d. and independent from zi, 2(0, )i N    with left  truncation at (1 )i z â  .

2. Use observations for which ˆ 1   to obtain â̂  and ˆ  in the truncated regression 
ˆ 1 i i i   z â .

3. Loop B times to obtain J sets of bootstrap estimates *
1{ }ˆ B

ib b  .
1. For each 1,...,i J  draw i  from 2ˆ(0, )N   with left  truncation at (1 )i z â .
2. For each 1,...,i J  compute *( )ˆ

i i i  z â .

3. Assign 
*

*
ˆ
ib

ib i
i




x x .

4. Calculate *
îb  for *( , )ib ix y .

4. bias *

1

ˆ ˆ ˆ1 B

i ib i
bB

  


   and bias-corrected score biasˆ ˆ ˆ̂ˆ
i i i    .

2 Smoothing is necessary to avoid inconsistency in estimating the upper bound of the support of the 
underlying data-generating process f(.) [Simar, Wilson, 1998].

3 θ, which is bounded between 0 and 1, could not be used to estimatethe truncated regression [Simar, 
Wilson, 2008].
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2.  Estimates of cost effi  ciency

2. 1. Naive score with given input prices

Denote wj the vector of input prices. Fare, Grosskopf, and Lovell (1985) defi ne cost 
effi  ciency γj  as

 /opt
j j j j j  w x w x ,  (2)

where opt
jx  is a solution to the optimization problem (formulated below for constant re-

turns to scale):

,
min

j
j jx

w x

 1
. . 0,   1, , ,

J

mj i mi
i

s t y y m M


       (3)

1
0,   1, , ,

J

nj i ni
i

x x n N


   

0,   1, , i i J    .

According to (2) and system (3), 0 ≤ γj ≤1  by construction. Note that (3) assumes that 
producers face input prices as given.

2.2. Propos ed bootstrap algorithm forcost effi  ciency 

Similarly to input-oriented effi  ciency scores, [Fare, Grosskopf, Lovell, 1985] cost ef-
fi ciency scores are linked to ˆ ( )L  y  and therefore are upwards-biased. Yet, a direct modi-
fi cation of the [Simar, Wilson, 1998; 2007] algorithm to bias correction of cost effi  ciency 
score γ, which simply replaces θ by γ at steps 2.2 or step 3.3 (e.g. as proposed in [Borger, 
Kerstens, Staat, 2008], is inconsistent. Indeed, let us look at a given observation i with 
coordinates ix  (point P at Figure 1). By defi nition of input-oriented effi  ciency, point P , 
which is an intersection of the ray from the origin to P  and ˆ ( )L  y , has coordinates ˆ

ix . 
Th e hyperplane, set by the cost function i iw x  and tangent to ˆ ( )L  y , intersects the ray 
from the origin to point P  at point 'P . Since points *P  and 'P  are on the same hyper-
plane, the costs in these points are equal. Th erefore, by defi nition of cost effi  ciency score, 
point 'P  has coordinates ˆ i x . Consequently, point P , obtained through rescaling inputs 
by *

,ˆ ˆ/i i b  , belongs to [ ', ]P P . However, it may happen that [ , ]P P P , i.e. [ ', ]P P P  . 
So the vector of bootstrapped inputs, obtained at step 2.2 of a direct modifi cation of the 
Simar and Wilson (1998) algorithm, may be outside ˆ ( )L y . (Th e same argument applies to 
step (3.3) for the case with environmental variables, where ˆ ( )ˆ

i  z  and (ˆ )ˆ i
  z . Note 

that the assumptions about strict convexity of L(y)  and free disposability of inputs are 
importantly exploited in our argument.
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To correct for the bias of the [Fare, Grosskopf, Lovell, 1985] cost effi  ciency we propose 
the following bootstrap, based on the premises that data generating process for the observed 
fi rms satisfy the [Kneip, Simar, Wilson, 2008; Simar, Wilson, 2000b] assumptions 4–6, which 
we mentioned in the Introduction and which allow a consistent approximation of the un-
known distribution of effi  ciency scores. Th e bootstrap is homogeneous both in terms of 
ˆ ( )f   and ˆ ( )f   and constructs pseudo-samples through re-sampling the input-oriented 

technical effi  ciency score and rescaling original inputs by the ratio *ˆ /i ib  . In this way, the 
bootstrapped inputs are “pushed” inside the ˆ ( )L y . Th erefore, *

îb , which calculated for the 
bootstrapped inputs at step (4) of our algorithm, allow for consistent bias correction.

1. Estimate naive cost effi  ciency scores 1,..ˆ ˆ., J   for each 1,...,i J . Assume (γ1,…, γJ)  
are i.i.d. with pdf fγ(.) .

2. Estimate naive input-oriented effi  ciency scores 1,..ˆ ˆ., J  . Assume ( 1,..., J  ) are 
i.i.d. with pdf fθ(.) .

3. Obtain *
ib  through smoothed bootstrap, and under the assumptions of homoge-

neous distribution of joint density of θ and joint density of γ in input-output space, 

assign *
* , 1, ,

ˆ
i

ib

i
b i b B




  x x  .

4. Calculate *
îb  for *( , )ib ix y .

5. For each i, bias
ˆ

*

1
ˆ ˆ1 ˆ

B

i ib i
bB

  


 

Next, we proceed to the model with environmental variables. We consider a vector zi 
of environmental variables for the input-oriented model and the vector i

z  of environ-
mental variables for the cost minimization model. Th e corresponding coeffi  cients in the 
truncated regression for each model are denoted, respectively, as βγ. Note that { } { }i i

z z  . 

Fig. 1. Bias correction of the cost effi  ciency, isoquant 
in the two-input space
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Indeed, as one of the reasons for the bias of cost effi  ciency scores is the bias of input-ori-
ented scores (owing to the empirical estimate of the frontier), the list of predictors for δγ  
includes the list of predictors for δ.

We denote i
 as the reciprocal of the effi  ciency score in the cost minimization model 

in order to distinguish it from δi , which is the reciprocal of the effi  ciency score in the in-
put-oriented model. Under the [Simar, Wilson, 2007] assumption about separability of x  
and z (i.e. the fact that L∂(y) does not depend on z ), we propose the following algorithm 
for the reciprocal of the [Fare, Grosskopf, Lovell, 1985] cost effi  ciency score i

 .
1. Estimate reciprocals of naive cost effi  ciency scores 1 ,...,ˆ

Ĵ
   , for each i = 1,…,J  us-

ing system (3).Assume 1i i i
     z â , where i  are i.i.d. and independent 

from i
z , 2(0, )i N    with left  truncation at (1 )i

  z â .

2. Estimate naive input-oriented distance function scores δ̂     1, …,δ̂        J , for each i = 1,…,J,
using the equivalent of system (2) for reciprocals of  . Assume, 1,i i i   z â  
where i  are i.i.d. and independent from iz , 2(0, )i N    with left  truncation at 
(1 )i z â .

3. Use observations for which ˆ 1   to obtain â̂  and ˆ  in the truncated regression 
1î i i   z â .

4. Loop B  times to obtain J  sets of bootstrap estimates *{ ˆ }ib , 1,...,b B .
1. For each 1,...,i J  draw i  from 2ˆ(0, )N   with left  truncation at (1 ˆ)i z â .

2. For each 1,...,i J  compute *( )ˆ
i i i  z â .

3. Given the semi-parametric dependence of   on z , assign 
*

*
ˆ
ib

ib i
i




x x .
4. Calculate *

îb
  for *( , )ib ix y .

5. Owing to semi-parametric dependence of   on z, we can compute 
bias *

1

ˆ̂ ˆ ˆ1 B

i iib
bB

    


   and bias-corrected score biasˆ ˆ ˆ̂ˆ
i i i
     

2.3.  Naive cost effi  ciency score with input prices under producer control

Tone (2002) concentrates on input costs, assuming that producers may choose prices 
for their inputs. Let 1 1( ,..., )T

j j j Nj Njw x w xx , 1( ,..., )T
JX x x , where jw  is a vector of 

prices for each input xj. Th e Tone (2002) “new” cost effi  ciency for DMU j  is defi ned as

/opt
j j j  ex ex

with opt
jx  a solution to (constant returns to scale formulation):

min
 ,j

jx
ex

1
. . 0,   1, , ,

J

mj i mi
i

s t y y m M


      (5)
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1
 0,   1, , ,

J

nj i ni
i

x x n N


   

0,   1, , .i i J   

Here e is a unit vector, and by construction in (4) and (5), 0 1j  .

2.4. Proposed boo tstrap algorithm for the new cost effi  ciency 

Denote Tn technology in [Tone, 2002] of “new” technical (and cost) effi  ciency esti-
mates.

 
  (6)

Defi ne the “new” input set ( ) {( ) : ( , ) }n nL T y x x y . As is demonstrated in [Tone, 
2002] (theorem 4), the set of constraints on each njx  in (5) is equivalent to this aggregate 
constraint:

 .  (7)

Consequently, for a given level of y , the ˆ ( )
nL y  is a hyperplane, parallel to the hyper-

plane set by a given level of the objective function jex . Th erefore, the tangency of the ob-
jective function and ˆ ( )

nL y  implies that the two hyperplanes are coincident (Figure 2). 
Accordingly, the ray from origin to the point ( )ˆ nP L y  intersects ˆ ( )

nL y  and the hyper-
plane, set by the objective function, at the same point. So P' = P . In other words, as is 
noted in theorem 6 in Tone (2002), the “new” cost effi  ciency point is also “new” techni-
cally effi  cient.4 So a consistent bias correction of the Tone (2002) “new” cost effi  ciency 
score may be conducted through a direct application of the Simar and Wilson (1998) and 

4 Th erefore, papers that estimate input-oriented effi  ciency scores using input costs as inputs and 
interpret the scores as cost effi  ciency (e. g. [Medin et al., 2011; Linna et al., 2010; Barros, Dieke, 2008] in 
fact, measure the [Tone, 2002]) “new” cost effi  ciency.

Fig. 2. Bias correction of the newcost effi  ciency, 
isoquant in two-input space
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the Simar and Wilson (2007) algorithm, so that the following rescaling is implemented at 

step (3.3): *
*
i

ib i
ib

xx







. Indeed, as ( )nL y  is set by the aggregate constraint (7), [ ', ]P P P  

is equivalent to [ , ]P P P . Th erefore, rescaling guarantees that each component of bx  is 
larger than the corresponding component of the original vector x , and vector bx  lies in 
the necessary subspace relative to ( )nL y  [Besstremyannaya, 2013].

3. Simulations

3.1. Microeconomic fra mework

Th e Cobb –Douglas production function, commonly used in the non-parametric ef-
fi ciency analysis in the banking industry [Kneip, Simar, Wilson; 2008, 2011; Fethi, Pa-
siouras, 2010; Th anassoulis, Portela, Despic 2008; Badin, Simar,2003; Simar, Wilson, 2002; 
2000b; Kittelsen,1999; Banker, Gadh, Gorr, 1993] is taken in the form of [Kumbhakar, 
2011; Resti, 2000]

 1
,nm

N

m m nm
n

y A x


    (8)

where nmx  is the quantity of n -th input, used to produce m -th output (
1

M

n nm
m

x x


  ), mA  

and nm  are the parameters. Outputs my  and input prices nw  are assumed to come from 
multivariate lognormal distribution, where vector of means and variance-covariance 
matriх are taken from our real banking data (in particular, are based on the asset approach 
in defi ning the input and output pairs)5. Th e minimal dimension of the input vector, re-
quired for diff erentiating between technical and cost effi  ciency, is two. Yet, banking is 
commonly considered to be a multi-output industry, and so we exploit two-output and 
three-input models:

   and

4.9157 0.0309 0.0368 0.0231
7.3498 1.2686 1.4686

ln , ln 2.0093 , 0.0368 0.2079 0.0702 .
6.2898 1.4680 1.8260

5.5727 0.0231 0.0702 0.1193

    
                                  

y w

In the absence of environmental variables, we employ the [Resti, 2000] approach of 
introducing cost ineffi  ciencies to (N – 1)  inputs and analytically computing the value of 
the N-th input, so that the fi rm remained on the same isoquant (with unchanged level of 
input-oriented effi  ciency): *

nm nm nmx x  , where 1,..., 1n N  ; 0nm  . Th en, cost effi  -
ciency   is calculated as follows (Appendix, eq. A. 13):

5 To check for robustness, we conducted a second set of simulations with data from the intermediation 
approach, and we found similar results.
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
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 

  
   

 


 
   

,
    

(9)

where 
1

N

m nm
n

 


   and 
/

1

nm mN
n

m
n nm

w
T

 



 
  

 
 .

Our estimations with Japanese data and results from the empirical literature [Liu, 
Ondrich, Ruggiero, 2012; Wang, 2003; Banker, Gadh, Gorr, 1993; Giokas, 1991] show that 
input elasticities do not vary appreciably for banking outputs employed in this paper. 
Hence, we regard nm n   (and hence m  ) and nm n  . Accordingly, we obtain 
(eq.A.15):

 
1 1 /

1 1
n NN N

n n N nn n
 


     

 


 

.  (10)

We use constant returns to scale with (α1, α2, α3) = (0.05, 0.05, 0.9). Ineffi  ciencies are 
added, so that * y y , 0 1  (see [Kneip, Simar, Wilson 2011; Badin, Simar 

2003; Simar, Wilson, 2002; 2000b; Resti, 2000; Kittelsen, 1999]). Th en, owing to homo-
thetic property of cost function, the input-oriented effi  ciency is θ. Cost ineffi  ciencies are 
added to x2 and x3 and analytically computed for x1 . Input-oriented effi  ciency is 

1/ (1 )   , where   is drawn from (2)Exp  and ( ) 0.5E   . Note that 1 (2)Exp  has 
high probability of obtaining a point in the neighborhood of unity. Consequently, the  
DGP with exponential distribution allows easier estimation of the frontier if compared to  
DGPs with fewer points in the proximity of unity6. In the presence of environmental var-
iables, we introduce ineffi  ciencies as *  y y , 0 1   , where   can be expressed as 

 We assume a simplifi ed case when the lists of environmental variables, infl uencing 
input-oriented effi  ciency and cost effi  ciency, coincide. 2( , )z zN    with left  truncation 
at unity. Following Simar and Wilson (2007), we set r = 2, β1 = β2 = 0.5, z1 = 1, z2  N(2,4), 

ε  N(0,1),  with left -truncation at (1 – ), δ = â + ε. Th en eq. (10) modifi es to

1 1
( / )

1 1
( ) n N

N N

n n N n
n n

      


 


 

 
  

 
 z .

As regards cost effi  ciency, n
n e  , where 2(0, )n N   . In this case the realized val-

ue of ηn may be smaller or larger than unity, and it allows to move x* in diff erent directions 
along the isoquant. To model diff erent size of cost ineffi  ciencies, we take {0.05,0.1}  . 
Following [Simar, Wilson, 2011b], we use 1000 trials with B=2000 iterations on each trial. 
Our samples {50,100,200,300, 400,600,800,1000}J   and confi dence levels (1 )  are 0.9, 
0.95 and 0.99.

6 If data-generating process results in a small number of points in the proximity of unity, the consistent 
estimation of the frontier would require increasing sample size appreciably.
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A fi xed point to measure cost effi  ciency on each trial is constructed as follows. We 
take a vector in the middle of the output and price data and assign it input-oriented effi  -
ciency Eθ. Th e coordinates of a point on the frontier are      * , , E E  x y w yì ì ì , 

where 
*( , ) x  is a an optimal demand function from eq.(A.2). Th en, we introduce ineffi  -

ciencies E  to ( 1)N   input coordinates of the point, and analytically compute the values 
of N-th input coordinate according to eq.(A.5).

3.2. Results

Owing to potential problems of ignoring the zero bound in implementing the [Silver-
man,  1986] refl ection method with the input-oriented effi  ciency scores   [Simar, Wilson, 
2000a], the estimations are conducted in terms of the reciprocals 1/  . Accordingly: 
fi rst, each point ˆ 1i   is refl ected by its symmetric image 2 1î  ; second, kernel den-
sity is estimated from the set of 2J  points [Simar , Wilson, 2008]. Our estimates demon-
strate that the absolute diff erence between the true and bias-corrected values of cost effi  -
ciency both in absence and presence of environmental variables is close to 0.04 with the 
smallest sample size (J = 50) and becomes less than 0.01 with J > 600 (Tables 1–2). As the 
values of effi  ciency scores belong to the [0, 1] segment, it may be concluded that our bias 
correction on average leads to the estimates with negligible diff erence from the true value 
under moderate sample sizes and reasonable numbers of bootstrap iterations.

Table 1. Absolute diff erence between the true and estimated cost effi  ciency
for homogeneous smooth bootstrap in  the absence of environmental variables,

with sample adjusted cross-validation bandwidth

J  σv α = 1  α = 0.05  α = 1.0

50 0.05 0.036  [0.012] 0.038  [0.012] 0.037  [0.012]

 100 0.05 0.026  [0.008] 0.026  [0.008] 0.026  [0.008]

200 0.05 0.018  [0.005] 0.018  [0.005] 0.018  [0.005]

300 0.05 0.014  [0.004] 0.014  [0.004] 0.014  [0.004]

400 0.05 0.012  [0.003] 0.012  [0.003] 0.012  [0.003]

600 0.05 0.01  [0.002] 0.01  [0.002] 0.01  [0.002]

800 0.05 0.008  [0.002] 0.009  [0.002] 0.008  [0.002]

1000 0.05 0.007  [0.002] 0.007  [0.002] 0.008  [0.002]

50 0.1 0.037  [0.012] 0.037  [0.012] 0.037  [0.012]

100 0.1 0.025 [0.008] 0.026  [0.008] 0.025  [0.008]

200 0.1 0.018  [0.005] 0.018  [0.005] 0.018  [0.005]

300 0.1 0.014  [0.004] 0.014  [0.004] 0.014  [0.004]
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Окончание табл. 1

J  σv α = 1  α = 0.05  α = 1.0

400 0.1 0.012  [0.003] 0.012  [0.003] 0.012  [0.003]

600 0.1 0.01  [0.002] 0.01  [0.002] 0.01  [0.002]

800 0.1 0.008  [0.002] 0.008  [0.002] 0.008  [0.002]

1.000 0.1 0.007  [0.002] 0.008  [0.002] 0.007  [0.002]

Note: standard deviation in brackets.

Table 2. Absolute diff erence between the true and estimated cost effi  ciency for semi-parametric 
bootstrap in the presence of environmental variables

J  σv α = 1  α = 0.05  α = 1.0

50 0.05 0.043  [0.017] 0.043  [0.017] 0.042  [0.016]

100 0.05 0.029  [0.010] 0.03  [0.010] 0.029  [0.010]

200 0.05 0.02  [0.006] 0.02  [0.005] 0.02  [0.005]

300 0.05 0.016  [0.004] 0.016  [0.004] 0.016  [0.004]

400 0.05 0.014  [0.003] 0.014  [0.003] 0.014  [0.003]

600 0.05 0.011  [0.002] 0.011  [0.002] 0.011  [0.002]

800 0.05 0.01  [0.002] 0.01  [0.002] 0.01  [0.002]

1.000 0.05 0.009  [0.002] 0.009  [0.002] 0.009  [0.002]

50 0.1 0.043  [0.018] 0.042  [0.017] 0.042  [0.016]

100 0.1 0.029  [0.010] 0.03  [0.010] 0.03  [0.010]

200 0.1 0.021  [0.006] 0.021  [0.006] 0.021  [0.006]

300 0.1 0.017  [0.004] 0.017  [0.004] 0.017  [0.004]

400 0.1 0.014  [0.004] 0.014  [0.003] 0.014  [0.003]

600 0.1 0.012  [0.003] 0.012  [0.003] 0.012  [0.003]

800 0.1 0.01  [0.002] 0.01  [0.002] 0.01  [0.002]

1.000 0.1 0.009  [0.002] 0.009  [0.002] 0.009  [0.002]

Notes: standard deviation in brackets; dim(x) = dim(y) = 2. 

4 . Effi  ciency estimates for Japanese banks

4 .1. Data

We use data from the Japanese Bankers Association, which provides fi nancial vari-
ables for all Japanese banks from their consolidated fi nancial statements and statements 
of cash fl ow, along with the number of employees, bank branches, and bank charters from 
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interim fi nancial statements. Regional (prefectural) variables come from the Bank of Japan 
(deposits, vault cash, loans, and bills discounted), Economic and Social Research Institute, 
Cabinet Offi  ce (gross domestic product and gross domestic product defl ator), Ministry of 
Land, Infrastructure and Transport, and Japan Statistical Yearbook (price of commercial 
land site).

Following common approaches to cost effi  ciency analyses in banking, we exploit a 
three input-two output model, where outputs are either performing loans and total secu-
rities (asset approach, e. g. [Hori, Yoshida, 1996; Fukuyama, Weber, 2002; Barros, Man-
agi, Matousek, 2012) or revenue from loans and revenue from other business activities 
(intermediation approach, e. g. [Kasuya, 1986; Fukuyama,1993; 1995; Takahashi, 2000; 
Fukuyama, Weber, 2010; Th anassoulis, Portela, Despic, 2008; Tortosa-Austina, 2002]). In 
each model the inputs are labor (total employees), capital (premises, real estate, and in-
tangibles) and funds from customers (we follow [Kasuya, 1986; 1989; Fukuyama, 1993; 
1995; Hori, Yoshida, 1996; McKillop, Glass, Morikawa, 1996; Glass, McKillop, Morikawa, 
1998; Fukuyama, Weber, 2002; Miyakoshi, Tsukuda, 2004; Fukuyama, Weber, 2008; Bar-
ros, Managi, Matousek, 2012]). Th e proxies for input prices are, respectively, personnel 
expenditure/total employees, capital expenditure/capital, and fund-raising expenditure/
funds from customers (e. g. as in [Kasuya, 1986; 1989; McKillop, Glass, Morikawa, 1996; 
Fukuyama, Weber, 2002]). Th e choice of inputs, outputs, and prices follows the meth-
odology of effi  ciency analysis in Japanese banking7. Bank-level environmental variables 
include bank size and bank product diversity (see [Aly et al., 1990; Simar, Wilson, 2007]), 
ratio of loan loss provisions to total loans (following [Altunbas et al., 2000; Drake, Hall, 
2003; Drake, Hall, Simper, 2009])8. Prefecture-level environmental variables are share of 
monetary aggregate in gross regional product, real rate of growth of gross domestic prod-
uct, and commercial land price [Liu, Tone, 2008]. We include dichotomous variables by 
bank charter (city bank, regional bank, regional second tier bank, trust bank, long-term 
credit bank). Bank holdings and fi nancial groups are excluded from the analysis, as they 
may have zero reported capital (Table 3).

Our sample uses data for the fi scal year which runs from April 2013 to March 2014. 
Th e sample represents the entire banking industry in Japan, yet its size is only 106. How-
ever, the results of our simulations demonstrate relatively small diff erences between the 
true and the estimated cost effi  ciency, even for such small samples.

Table 3. Descriptive statistics for the sample of 106 Japanese banks in fi scal year 2013

Variable Defi nition Mean Std. Dev.  Min Max

Inputs

x_1  labor = total employees (including board) 2714 4481 312 31461

x_2  capital = premises and real estate + intangibles 26 123 0.044 1125

7 Note that the intermediation approach prevails in international literature [Fethi, Pasiouras, 2010], 
yet the asset approach is more widespread in analyses of Japanese banking. See review of the literature on 
measuring the effi  ciency of Japanese banks in [Besstremyannaya, 2017].

8 Using the non-performing loans in an alternative approach does not change the results of the 
estimates appreciably, since loan loss provisions and non-performing loans are highly correlated.
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Продолжение табл. 3

Variable Defi nition Mean Std. Dev.  Min Max

x_3 funds from customers = total deposits + ne-
gotiable certifi cates of deposits + call mon-
ey + bills sold + borrowed money + foreign 
exchange deposits + other deposits 

7366 21589 219 157288

Outputs

Asset approach

y_1 performing loans = total loans  — nonper-
forming loans 

4614 12566 158 89543

y_2  securities and other interest bearing assets 2575 8434 1.4 66543

Intermediation 
approach

y_3 revenue from loans = interest on loans and 
discounts + interest on bills bought 

67 181 3.6 1326

y_4 revenue from other business activity = total 
operating income  — other operating in-
come — interest and dividends on securi-
ties — y_3 

63 214 0.706 1428

Input prices

w_1 labor price = (general and administrative ex-
penses-depreciation)/total employees 

0.017 0.007 0.009 0.065

w_2  capital price = (expenditure on premises and 
fi xed assets)/x_2 

1.126 1.399 0.136 10.442

w_3  price of funds = fund raising expenditure/x_3  0.001 0.001 0 0.005

Bank variables

z_1 = ln(branches) 4.56 0.62 3.05 6.72

z_2 Herfi ndahl index of product diversity 0.72 0.23 0.26 1.44

z_3 nonperforming loan ratio = nonperforming 
loans /total loans 

0.03 0.01 0.004 0.07

z_4 = 1 if city bank 0.05 0.21 0 1

z_5  = 1 if regional bank 0.56 0.5 0 1

z_6  = 1 if regional tier 2 (former Sogo) bank 0.35 0.48 0 1

z_7  = 1 if trust bank 0.03 0.17 0 1

z_8 = 1 if longterm credit bank 0.02 0.14 0 1
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Окончание табл. 3

Variable Defi nition Mean Std. Dev.  Min Max

Prefectural 
variables

z_9  rate of growth of gross regional product (in 
2010 real terms) 

1 0.05 0.93 1.18

z_10 share of monetary aggregate (M2 + negotiable 
certifi cates of deposit) in regional product 

0.7 0.32 0.4 1.52

z_11  share of loans in gross regional product 0.75 0.46 0.36 1.95

z_12 rate of growth of price of commercial land 
(in 2010 real terms) 

0.58 0.14 0.41 0.92

Note: fi nancial variables are in billion yen. Th e sample size is 106.

 4.2. Results

Estimations are conducted under variable returns to scale with B=2000. We exploit 
least squares cross-validation bandwidth and use 1 3z z , 9 12z z  and a dummy for city 
banks ( 4z ) in the model with the environmental variables. (Th e remaining dichotomous 
variables for other bank charters are omitted, owing to multicollinearity).

Table 4. Cost effi  ciency scores for Japanese banks

 Score Asset approach Intermediation approach

̂ mean 0.7189 0.6679

st.dev. 0.1406 0.166

range [0.4496, 1] [0.3781, 1]

ˆ̂ mean 0.6622 0.5906

st.dev. 0.13 0.137

range [0.4091, 0.9503] [0.3338, 0.9011]

1/ ˆ mean 0.7276 0.6649

st.dev. 0.1301 0.1544

range [0.5130, 1] [0.4220, 1]

1/ ˆ̂ mean 0.6737 0.615

st.dev. 0.1187 0.1205

range [0.4832, 0.9732] [0.3739, 0.8928]
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Table 4 shows the estimates of “naïve” score ̂  (1/ ˆ ) and bias-corrected score ˆ̂
( 1/ ˆ̂ ) for the models, corresponding to the asset approach and the intermediation ap-
proach. In each model, the mean bias-corrected score is lower than the mean “naïve” 
score, while the standard deviation of the “naïve” and bias-corrected scores are close. Th e 
bias-corrected score is “to the left ” (if compared to the range of the “naïve” score), and 
there are no exact unity values of bias-corrected cost effi  ciency. Th e mean value of cost 
effi  ciency is higher in the model, with the asset approach both in presence and in absence 
of environmental variables. Accounting for environmental variables leads to higher cost 
effi  ciency scores, if compared to corresponding models without environmental variables.

Conclusion
Th e paper shows that a direct modifi cation of the [Simar, Wilson, 1998; 2007] meth-

odology is inconsistent for correcting the bias of the [Fare, Grosskopf, Lovell, 1985] cost 
effi  ciency scores and proposes an alternative bootstrap algorithm for estimation. To ap-
proximate the bias of the “naïve” cost effi  ciency score, the proposed algorithm re-samples 
“naïve” input-oriented effi  ciency scores, rescales original inputs to bring them to the fron-
tier, and then re-estimates cost effi  ciency scores for the rescaled inputs.

Th e results of simulation analyses for a multi-input, multi-output Cobb–Douglas 
production function with correlated outputs, and correlated technical and cost effi  ciency, 
show consistency of the proposed algorithm. An application of the algorithm to real data 
of 106 Japanese banks for fi scal year 2013 allows quantifying the bias of the naïve cost ef-
fi ciency scores.
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