Инструментарий антикризисной финансовой диагностики предприятий на рынке недвижимости

  • Александр Александрович Баркар Санкт-Петербургский государственный экономический университет, Российская Федерация, 191023, Санкт-Петербург, ул. Садовая, 21

Аннотация

Несмотря на позитивные тенденции к улучшению ключевых макроэкономических индикаторов, российская экономика остается чувствительной к внешним и внутренним рискам, а реальные доходы населения продолжают снижаться. В связи с этим рынок аренды коммерческой недвижимости, ослабленный в течение последних двух лет, все еще далек от стабилизации, что указывает на необходимость совершенствования инструментов антикризисной финансовой диагностики. Целью данного исследования является построение моделей антикризисной финансовой диагностики для предприятий, сдающих коммерческую недвижимость в аренду. Для достижения поставленной цели в статье осуществлен краткий обзор существующих инструментов, проблем их применения и совершенствования. Подробно раскрываются этапы разработки комплексных моделей антикризисной диагностики с использованием методов статистической классификации данных и представлены результаты классификации хозяйствующих субъектов в сравнении с зарубежными аналогами.

Ключевые слова:

антикризисная диагностика, финансовая несостоятельность, дискриминантный анализ, логистическая регрессия, прогнозирование

Скачивания

Данные скачивания пока недоступны.
 

Биография автора

Александр Александрович Баркар, Санкт-Петербургский государственный экономический университет, Российская Федерация, 191023, Санкт-Петербург, ул. Садовая, 21

аспирант

Литература

Литература на русском языке

Баркар А. А. Балльная модель антикризисной диагностики предприятий, сдающих коммерческую недвижимость в аренду // Изв. С.-Петерб. гос. экон. ун-та. 2016. № 4. С. 145–149.

Колышкин А. В., Гиленко Е. В., Довженко С. Е., Жилкин С. А., Чое С. Е. Прогнозирование финансовой несостоятельности предприятий // Вестн. С.-Петерб. ун-та. Серия 5. Экономика. 2014. № 2. С. 122–142.

Мазурова И. И., Белозерова Н. П., Леонова Т. М., Подшивалова М. М. Методы оценки вероятности банкротства предприятия: учеб. пособие. СПб.: Изд-во СПбГУЭФ, 2012. 53 с.

Наследов А. IBM SPSS Statistics 20 и AMOS: профессиональный статистический анализ данных. СПб.: Питер, 2013. 416 с.

Обзор рынка коммерческой недвижимости. I полугодие 2016. Colliers International Россия. URL: http://www.colliers.com/-/media/files/emea/russia/research/2016/russia_h1_2016_rus.pdf?la=ru-RU (дата обращения: 24.10.2016).

О ходе реализации Плана действий Правительства Российской Федерации, направленных на обеспечение стабильного социально-экономического развития Российской Федерации в 2016 году, и о поддержке приоритетных отраслей промышленности в 2017 году. Сайт Правительства Российской Федерации. URL: http://government.ru/news/24922/ (дата обращения: 24.10.2016).

Послание Президента Федеральному Собранию. Официальные сетевые ресурсы Президента России. URL: http://www.kremlin.ru/events/president/news/53379 (дата обращения: 12.12.2016).

Тайшин А. А. Применение модели KMV для оценки кредитного риска индивидуальных предпринимателей // Вестн. Новосиб. гос. ун-та. Серия: Социально-экономические науки. 2014. Т. 14, вып. 3. С. 22–32.

Федорова Е. А., Гиленко Е. В., Довженко С. Е. Модели прогнозирования банкротства: особенности российских предприятий // Проблемы прогнозирования. 2013. № 2. С. 85–92.


References in Latin Alphabet

Agarwal V., Taffler R. Comparing the performance of market-based and accounting-based bankruptcy prediction models // Journal of Banking and Finance. 2008. Vol. 32, N 8. P. 1541–1551.

Altman E. I. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy // Journal of Finance. 1968. N 23(4). P. 589–609.

Altman E. I., Hotchkiss E. Financial distress and bankruptcy: predict and avoid bankruptcy, analyze and invest in distressed debt. 3rd ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2006. 368 с.

Aziz M. A., Dar H. A. Predicting Corporate Bankruptcy: Where Do We Stand? // Corporate Governance. 2006. Vol. 6, N 1. P. 18–33.

Beaver W. Financial Ratios as Predictors of Failures // Journal of Accounting Research (supplement). 1966. N 55 (3). P. 272–283.

Bharath S., Shumway T. Forecasting Default with the Merton Distance to Default Model // Th e Review of Financial Studies. 2008. N 21 (3). P. 1339–1369.

Black F., Cox J. Valuing Corporate Securities: Some Effects of Bond Indenture Provisions // Journal of Finance. 1976. N 31 (2). P. 351–367.

Charitou A., Neophytou E., Charalambous C. Predicting corporate failure: empirical evidence for the UK // European Accounting Review. 2004. N 13 (3). P. 465–497.

Chesser D. Predicting loan noncompliance // The Journal of Commercial Bank Lending. 1974. August. P. 28–38.

du Jardin P. Bankruptcy prediction models: How to choose the most relevant variables? // Bankers, Markets & Investors. 2009. Issue 98, January-February. P. 39–46.

Fitzpatrick P. J. A Comparison of Ratios of Successful Industrial Enterprises with Those of Failed Firms // The CPA Journal. 1932. N 12 (3). P. 598–605.

Fulmer J. G. et al. A Bankruptcy Classification Model For Small Firms // Journal of Commercial Bank Lending. 1984. July. P. 25–37.

Ohlson J. A. Financial Ratios and the Probabilistic Prediciton of Bankrupcy // Journal of Accounting Research. 1980. Vol. 18. N 1. P. 109–131.

Odom M., Sharda R. A Neural Network Model for Bankruptcy Prediction // Proceeding of the International Joint Conference on Neural Networks, San Diego, 17–21 June 1990. Vol. II. IEEE Neural Networks Council. P. 163–171.

Rosendale W. M. Credit Department Methods // Bankers’ Magazine. 1908. P. 183–184.

Taffler R. J., Tisshaw H. Going, Going, Gone — Four Factors Which Predict // Accountancy. 1977. N 88 (1003). P. 50–54.

Wall A. Study of Credit Barometrics // Federal Reserve Bulletin. 1919. Vol. 5. P. 229–243.

Wall A., Dunning R. W. Ratio Analysis of Financial Statements // Harper and Brothers. 1928. P. 152–179.

Wood A. P. The performance of insolvency prediction and credit risk models in the UK: A comparative study, development and wider application. University of Exeter, 2012. 373 p.

Zmijewski M. E. Methodological Issues Related To the Estimation of Financial Distress Prediction Models // Journal of Accounting Research. 1984. Vol. 22. P. 59–82.

Fitch Revives Outlook on Russia to Stable; Affirms at ‘BBB-‘ FitchRatings. URL: https://www.fitchratings.com/site/pr/1013171 (дата обращения: 24.10.2016).


Translation of references in Russian into English

Agarwal V., Taffler R. Comparing the performance of market-based and accounting-based bankruptcy prediction models. Journal of Banking and Finance, 2008, vol. 32, no. 8, pp. 1541–1551.

Altman E. I. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. Journal of Finance, 1968, no. 23 (4), pp. 589–609.

Altman E. I., Hotchkiss E. Financial distress and bankruptcy: predict and avoid bankruptcy, analyze and invest in distressed debt. 3rd ed. Hoboken, New Jersey, John Wiley & Sons, Inc., 2006. 368 p.

Aziz M. A., Dar H. A. Predicting Corporate Bankruptcy: Where Do We Stand? Corporate Governance, 2006, vol. 6, no. 1, pp. 18–33.

Barkar A. A. Ball’naia model’ antikrizisnoi diagnostiki predpriiatii, sdaiushchikh kommercheskuiu nedvizhimost’ v arendu [Scoring models of crisis diagnosis for companies renting commercial real estate]. Izv. S.-Peterb. gos. ekon. un-ta [News of St. Petersburg State University of Economics], 2016, no. 4, pp. 145–149. (In Russian)

Beaver W. Financial Ratios as Predictors of Failures. Journal of Accounting Research (supplement), 1966, no. 55 (3), pp. 272–283.

Bharath S., Shumway T. Forecasting Default with the Merton Distance to Default Model. The Review of Financial Studies, 2008, no. 21 (3), pp. 1339–1369.

Black F., Cox J. Valuing Corporate Securities: Some Effects of Bond Indenture Provisions. Journal of Finance, 1976, no. 31 (2), pp. 351–367.

Charitou A., Neophytou E., Charalambous C. Predicting corporate failure: empirical evidence for the UK. European Accounting Review, 2004, no. 13 (3), pp. 465–497.

Chesser D. Predicting loan noncompliance. The Journal of Commercial Bank Lending, 1974, August, pp. 28–38.

du Jardin P. Bankruptcy prediction models: How to choose the most relevant variables? Bankers, Markets & Investors, 2009, issue 98, January-February, pp. 39–46.

Fedorova E. A., Gilenko E. V., Dovzhenko S. E. Modeli prognozirovaniia bankrotstva: osobennosti rossiiskikh predpriiatii [Models of bankruptcy forecasting: Case study of Russian enterprises]. Problemy prognozirovaniia [The Problems of Forecasting], 2013, no. 2, pp. 85–92. (In Russian)

Fitch Revives Outlook on Russia to Stable; Affirms at ‘BBB-‘ FitchRatings. Available at: https://www.fitchratings.com/site/pr/1013171 (accessed: 24.10.2016).

Fitzpatrick P. J. A Comparison of Ratios of Successful Industrial Enterprises with Th ose of Failed Firms // The CPA Journal. 1932. N 12(3). P. 598–605.

Fulmer J. G. et al. A Bankruptcy Classification Model For Small Firms. Journal of Commercial Bank Lending, 1984, July, pp. 25–37.

Kolyshkin A. V., Gilenko E. V., Dovzhenko S. E., Zhilkin S. A., Choe S. E. Prognozirovanie fi nansovoi nesostoiatel’nosti predpriiatii [Forecasting the fi nancial insolvency of enterprises]. Vestnik SPbSU. Series 5. Economics, 2014, iss. 2, pp. 122–142. (In Russian)

Mazurova I. I., Belozerova N. P., Leonova T. M., Podshivalova M. M. Metody otsenki veroiatnosti bankrotstva predpriiatiia: ucheb. posobie [Methods of the companies’ bankruptcy probability evaluation]. St. Petersburg, Publ. SPbGUEF, 2012. 53 p. (In Russian)

Nasledov A. IBM SPSS Statistics 20 i AMOS: professional’nyi statisticheskii analiza dannykh [IBM SPSS Statistics 20 and AMOS: professional statistical data analysis]. St. Petersburg, Piter Publ., 2013. 416 p. (In Russian)

O khode realizatsii Plana deistvii Pravitel’stva Rossiiskoi Federatsii, napravlennykh na obespechenie stabil’nogo sotsial’no-ekonomicheskogo razvitiia Rossiiskoi Federatsii v 2016 godu, i o podderzhke prioritetnykh otraslei promyshlennosti v 2017 godu [On implementation of the Plan of the Russian Government’s actions to ensure sustainable economic and social development of the Russian Federation in 2016 and on support of the key industries in 2017]. Sait Pravitel’stva Rossiiskoi Federatsii. Available at: http://government.ru/news/24922/ (accessed: 24.10.2016). (In Russian)

Obzor rynka kommercheskoi nedvizhimosti. I polugodie 2016. Colliers International Rossiia [Colliers International Rossiya. Commercial real estate market review]. Available at: http://www.colliers.com/-/media/files/emea/russia/research/2016/russia_h1_2016_rus.pdf?la=ru-RU (accessed: 24.10.2016). (In Russian)

Odom M., Sharda R. A Neural Network Model for Bankruptcy Prediction. Proceeding of the International Joint Conference on Neural Networks, San Diego, 17–21 June 1990. Vol. II. IEEE Neural Networks Council, pp. 163–171.

Ohlson J. A. Financial Ratios and the Probabilistic Prediciton of Bankrupcy. Journal of Accounting Research, 1980, vol. 18, no. 1, pp. 109–131.

Poslanie Prezidenta Federal’nomu Sobraniiu. Ofi tsial’nye setevye resursy Prezidenta Rossii [Presidential Address to the Federal Assembly]. Available at: http://www.kremlin.ru/events/president/news/53379 (accessed: 12.12.2016). (In Russian)

Rosendale W. M. Credit Department Methods. Bankers’ Magazine, 1908, pp. 183–184.

Taffl er R. J., Tisshaw H. Going, Going, Gone — Four Factors Which Predict. Accountancy, 1977, no. 88 (1003), pp. 50–54.

Taishin A. A. Primenenie modeli KMV dlia otsenki kreditnogo riska individual’nykh predprinimatelei [Application of KMV model to assess credit risk of individual entrepreneurs]. Bulletin of Novosibirsk State University. Series: Social-economic sciences, 2014, vol. 14, iss. 3, pp. 22–32. (In Russian)

Wall A. Study of Credit Barometrics. Federal Reserve Bulletin, 1919, vol. 5, pp. 229–243.

Wall A., Dunning R. W. Ratio Analysis of Financial Statements. Harper and Brothers, 1928, pp. 152–179.

Wood A. P. The performance of insolvency prediction and credit risk models in the UK: A comparative study, development and wider application: University of Exeter, 2012. 373 p.

Zmijewski M. E. Methodological Issues Related To the Estimation of Financial Distress Prediction Models. Journal of Accounting Research, 1984, vol. 22, pp. 59–82.

Опубликован
2017-12-29
Как цитировать
Баркар, А. А. (2017). Инструментарий антикризисной финансовой диагностики предприятий на рынке недвижимости. Вестник Санкт-Петербургского университета. Экономика, 33(4), 658-672. https://doi.org/10.21638/11701/spbu05.2017.408
Раздел
Экономика фирмы и производственный менеджмент