Measuring inflation expectations: Traditional and innovative approaches

Authors

  • Евгений Всеволодович Балацкий Financial University under the Government of the Russian Federation, 49, Leningradskiy pr., Moscow, 125167, Russian Federation; Central Economic Mathematical Institute of the Russian Academy of Sciences, 47, Nakhimovskiy pr., Moscow, 117418, Russian Federation https://orcid.org/0000-0002-3371-2229
  • Максим Андреевич Юревич Financial University under the Government of the Russian Federation, 49, Leningradskiy pr., Moscow, 125167, Russian Federation

DOI:

https://doi.org/10.21638/spbu05.2018.403

Abstract

sociological surveys; stock market indicators; econometric (mathematical) models; methods of big data research. It is noted that the coexistence of these four groups is a consequence of two trends of the last decades: the presence of two lines of economic tools development associ-ated with the improvement of traditional methods and the creation of completely new analytical approaches for processing big data. The transformation of the economy into engineering (technical) science with its inherent problem of instrumental pluralism. Within the frame-work of sociological surveys, three groups of respondents were considered — population, entrepreneurs and financiersexperts. Market indices of inflation expectations contain a kind of regulatory conflict, the essence of which is that the monetary failures of one Agency (Central Bank) are covered by another Agency (Ministry of Finance) and thus generate unaccounted endogenous shocks. We consider econometric models that include three types-the concept of “back-looking” and “forward-looking” inflation expectations, as well as the concept of the Phillips curve. It is proved that econometric models are characterized by extremely low sus-ceptibility of “black swans” and primitive representation of the mechanism of inflationary expectations formation, which makes this approach the least promising. Among the newest methods of measuring inflation expectations considered big data-technologies that use opera-tional data of the Internet environment and social networks. It is concluded that this class of methods is the most promising and in the future is able in its importance and popularity to come to the first place. The authors substantiate the thesis about the impending reshuffle of the popularity of the four types of inflation expectations estimation methods.

Keywords:

inflation, inflation expectations, sociological research, econometrics, big data, market index

Downloads

Download data is not yet available.
 

References

Литература на русском языке

Балацкий Е. В., Екимова Н. А. Прогнозирование настроений населения и идентификация «социальных пузырей» // Мониторинг общественного мнения. 2008. № 1. С. 62–71.

Голощапова И. О., Андреев М. Л. Оценка инфляционных ожиданий российского населения методами машинного обучения // Вопросы экономики. 2017. № 6. С. 71–93.

Жемков М. И., Кузнецова О. С. Измерение инфляционных ожиданий участников финансового рынка в России // Вопросы экономики. 2017. № 10. С. 111–122.

Мирончик Н., Банцевич П. Количественная оценка инфляционных ожиданий в Республике Беларусь // Банковский вестник. 2014. № 1. С. 10–20.

Перевышин Ю. Н., Рыкалин А. С. Моделирование инфляционных ожиданий в российской экономике. 2018. URL: https://ssrn.com/abstract=3149565 (дата обращения: 23.08.2018).

Росстат. Социальное положение и уровень жизни населения России. 2017. Стат. сб. M.: Росстат, 2018. 332 c.

Соколова А. В. Инфляционные ожидания и кривая Филлипса: оценка на российских данных // Деньги и кредит. 2014. № 11. С. 61–67.

Стивенс-Давидовиц С. Все лгут. Поисковики, BigData и Интернет знают о вас все. 2018. М.: Эксмо. 384 с. Хазанов А. А. О квантификации инфляционных ожиданий Банком России // Деньги и кредит. 2015. № 3. С. 59–63.

References in Latin Alphabet

Askitas N., Zimmermann K. Google econometrics and unemployment forecasting. Applied Economics Quarterly, 2009, vol. 55, no. 2, pp. 107–120.

Ball L., Mazumder S. Inflation dynamics and the great recession // Brookings Papers on Economic Activity. 2011. P. 337–406.

Barr D., Campbell J. Inflation, real interest rates, and the bond market: A study of UK nominal and index-linked government bond prices // Journal of Monetary Economics. 1997. Vol. 39, No. 3. P. 361–383.

Beechey M., Johannsen B., Levin A. Are long-run inflation expectations anchored more firmly in the Euro area than in the United States? American Economic Journal: Macroeconomics, 2011, vol. 3, no. 2, pp. 104–129.

Blanchard O. The Phillips Curve: Back to the’60s? // American Economic Review. 2016. Vol. 106, No. 5. P. 31–34.

Calvo G. Staggered prices in a utility-maximizing framework // Journal of monetary Economics. 1983. Vol. 12, No. 3. P. 383–398.

Choi H., Varian H. Predicting the present with Google Trends // Economic Record. 2012. Vol. 88. P. 2–9.

Coibion O., Gorodnichenko Y. Is the Phillips curve alive and well after all? Inflation expectations and the missing disinflation // American Economic Journal: Macroeconomics. 2015. Vol. 7, No. 1. P. 197–232.

Croushore D. Introducing: the survey of professional forecasters // Business Review-Federal Reserve Bank of Philadelphia. 1993. Vol. 11. P. 3–15.

Cunningham R., Desroches B., Santor E. Inflation expectations and the conduct of monetary policy: A review of recent evidence and experience // Bank of Canada Review. 2010. Spring. P. 13–25.

De Bruin, W., van der Klaauw W., van Rooij M., Teppa F., de Vos K. Measuring expectations of inflation: Effects of survey mode, wording, and opportunities to revise // Journal of Economic Psychology. 2017. Vol. 59. P. 45–58.

Doser A., Nunes R., Rao N., Sheremirov V. Inflation expectations and nonlinearities in the Phillips curve. 2017. URL: https://ssrn.com/abstract=3072265 (дата обращения: 23.08.2018).

Easaw J., Golinelli R., Malgarini M. What determines households inflation expectations? Theory and evidence from a household survey // European Economic Review. 2013. Vol. 61, iss. C. P. 1–13.

Ettredge M., Gerdes J., Karuga G. Using web-based search data to predict macroeconomic statistics // Communications of the ACM. 2005. Vol. 48, No. 11. P. 87–92.

Faust J., Wright J. H. Forecasting inflation // Handbook of economic forecasting. Elsevier. 2013. Vol. 2. P. 2–56. Gimeno R., Ortega E. Euro area inflation expectations // IMF working paper. 2018. URL: https://www.imf.org/~/media/Files/Publications/WP/2018/wp18167.ashx (дата обращения: 23.08.2018).

Gürkaynak R., Sack B., Wright J. The TIPS yield curve and inflation compensation // American Economic Journal: Macroeconomics. 2010. Vol. 2, No. 1. P. 70–92.

Guzman G. Internet search behavior as an economic forecasting tool: The case of inflation expectations // Journal of economic and social measurement. 2011. Vol. 36, No. 3. P. 119–167.

Hördahl P., Tristani O. Inflation risk premia in the euro area and the United States // International Journal of Central Banking. 2014. Vol. 10, No. 3. P. 1–47.

Li X., Ma J., Wang S., Zhang X. How does Google search affect trader positions and crude oil prices? // Economic Modelling. 2015. Vol. 49. P. 162–171.

Mankiw N., Reis R., Wolfers J. Disagreement about inflation expectations // NBER macroeconomics annual. 2003. Vol. 18. P. 209–248.

McCallum B. Rational expectations and the estimation of econometric models: An alternative procedure // International Economic Review. 1976. Vol. 17, No. 2. P. 484–490.

Nautz D., Strohsal T. Are US inflation expectations re-anchored? // Economics Letters. 2015. Vol. 127. P. 6–9.

Rondina F. Estimating unobservable inflation expectations in the New Keynesian Phillips Curve // Econometrics. 2018. Vol. 6, No. 1. URL: http://www.mdpi.com/2225-1146/6/1/6/html (дата обращения: 23.08.2018).

Seabold S., Coppola A. Nowcasting prices using Google trends: an application to Central America. 2015. N 7398. World Bank, Washington, DC. URL: https://openknowledge.worldbank.org/handle/10986/22655 (дата обращения: 23.08.2018).

Söderlind P. Inflation Risk Premia and Survey Evidence on Macroeconomic Uncertainty // International Journal of Central Banking. 2011. June. P. 113–133.

Sousa R., Yetman J. Inflation expectations and monetary policy. 2016 // BIS Papers N 89. URL: https://www.bis.org/publ/bppdf/bispap89d_rh.pdf (дата обращения: 23.08.2018).

Vosen S., Schmidt T. Forecasting private consumption: survey‐based indicators vs. Google trends // Journal of Forecasting. 2011. Vol. 30, No. 6. P. 565–578.


Translation of references in Russian into English

Askitas N., Zimmermann K. Google econometrics and unemployment forecasting. Applied Economics Quarterly, 2009, vol. 55, no. 2, pp. 107–120.

Balatskii E. V., Ekimova N. A. Prognozirovanie nastroenii naseleniia i identifikatsiia «sotsial’nykh puzyrei». [Forecasting of public sentiment and identification of “social bubbles”]. Monitoring obshchestvennogo mneniia [Monitoring of public opinion], 2008, no. 1, pp. 62–71. (In Russian)

Ball L., Mazumder S. Inflation dynamics and the great recession. Brookings Papers on Economic Activity, 2011, pp. 337–406.

Barr D., Campbell J. Inflation, real interest rates, and the bond market: A study of UK nominal and index-linked government bond prices. Journal of Monetary Economics, 1997, vol. 39, no. 3, pp. 361–383.

Beechey M., Johannsen B., Levin A. Are long-run inflation expectations anchored more firmly in the Euro area than in the United States? American Economic Journal: Macroeconomics, 2011, vol. 3, no. 2, pp. 104–129.

Blanchard O. The Phillips Curve: Back to the’60s? American Economic Review, 2016, vol. 106, no. 5, pp. 31–34.

Calvo G. Staggered prices in a utility-maximizing framework. Journal of monetary Economics, 1983, vol. 12, no. 3, pp. 383–398.

Choi H., Varian H. Predicting the present with Google Trends. Economic Record, 2012, vol. 88, pp. 2–9.

Coibion O., Gorodnichenko Y. Is the Phillips curve alive and well after all? Inflation expectations and the missing disinflation. American Economic Journal: Macroeconomics, 2015, vol. 7, no. 1, pp. 197–232.

Croushore D. Introducing: the survey of professional forecasters. Business Review — Federal Reserve Bank of Philadelphia, 1993, vol. 11, pp. 3–15.

Cunningham R., Desroches B., Santor E. Inflation expectations and the conduct of monetary policy: A review of recent evidence and experience. Bank of Canada Review, 2010, Spring, pp. 13–25.

De Bruin W., van der Klaauw W., van Rooij M., Teppa F., de Vos K. Measuring expectations of inflation: Effects of survey mode, wording, and opportunities to revise. Journal of Economic Psychology, 2017, vol. 59, pp. 45–58.

Doser A., Nunes R., Rao N., Sheremirov V. Inflation expectations and nonlinearities in the Phillips curve. 2017. Available at: https://ssrn.com/abstract=3072265 (accessed: 23.08.2018).

Easaw J., Golinelli R., Malgarini M. What determines households inflation expectations? Theory and evidence from a household survey. European Economic Review, 2013, vol. 61, iss. C, pp. 1–13.

Ettredge M., Gerdes J., Karuga G. Using web-based search data to predict macroeconomic statistics. Communications of the ACM, 2005, vol. 48, no. 11, pp. 87–92.

Faust J., Wright J. H. Forecasting inflation. Handbook of economic forecasting. Elsevier, 2013, vol. 2, pp. 2–56.

Gimeno R., Ortega E. Euro area inflation expectations. IMF working paper. 2018. Available at: https://www.imf.org/~/media/Files/Publications/WP/2018/wp18167.ashx (accessed: 23.08.2018).

Goloshchapova I. O., Andreev M. L. Otsenka infliatsionnykh ozhidanii rossiiskogo naseleniia metodami mashinnogo obucheniia [Estimation of inflationary expectations of the Russian population by methods of machine learning]. Voprosy ekonomiki [Questions of Economics], 2017, no. 6, pp. 7– 93. (In Russian)

Gürkaynak R., Sack B., Wright J. The TIPS yield curve and inflation compensation. American Economic Journal: Macroeconomics, 2010, vol. 2, no. 1, pp. 70–92.

Guzman G. Internet search behavior as an economic forecasting tool: The case of inflation expectations. Journal of economic and social measurement, 2011, vol. 36, no. 3, pp. 119–167.

Khazanov A. A. O kvantifikatsii infliatsionnykh ozhidanii Bankom Rossii [On quantification of inflation expectations by the Bank of Russia]. Den’gi i kredit [Money and credit], 2015, no. 3, pp. 59–63. (In Russian)

Hördahl P., Tristani O. Inflation risk premia in the euro area and the United States. International Journal of Central Banking, 2014, vol. 10, no. 3, pp. 1–47.

Li X., Ma J., Wang S., Zhang X. How does Google search affect trader positions and crude oil prices? Economic Modelling, 2015, vol. 49, pp. 162–171.

Mankiw N., Reis R., Wolfers J. Disagreement about inflation expectations. NBER macroeconomics annual, 2003, vol. 18, pp. 209–248.

McCallum B. Rational expectations and the estimation of econometric models: An alternative procedure. International Economic Review, 1976, vol. 17, no. 2, pp. 484–490.

Mironchik N., Bantsevich P. Kolichestvennaia otsenka infliatsionnykh ozhidanii v Respublike Belarus’ [Quantitative assessment of inflation expectations in the Republic of Belarus]. Bankovskii vestnik [Banking Bulletin], 2014, no. 1, pp. 10–20. (In Russian)

Nautz D., Strohsal T. Are US inflation expectations re-anchored? Economics Letters, 2015, vol. 127, pp. 6–9.

Perevyshin Iu. N., Rykalin A. S. Modelirovanie Infliatsionnykh Ozhidanii v Rossiiskoi Ekonomike [Modeling Inflation Expectations n the Russian Economy], 2018. Available at: https://ssrn.com/abstract=3149565 (accessed: 23.08.2018). (In Russian)

Rondina F. Estimating unobservable inflation expectations in the New Keynesian Phillips Curve. Econometrics, 2018, vol. 6, no. 1. Available at: http://www.mdpi.com/2225-1146/6/1/6/html (accessed: 23.08.2018).

Rosstat. Sotsial’noe polozhenie i uroven’ zhizni naseleniia Rossii [Social status and standard of living of the population of Russia]. 2017, stat. sb. Rosstat. Moscow, 2018. 332 p. (In Russian)

Seabold S., Coppola A. Nowcasting prices using Google trends: an application to Central America. 2015, no. 7398. World Bank, Washington, DC. Available at: https://openknowledge.worldbank.org/handle/10986/22655 (accessed: 23.08.2018).

Söderlind P. Inflation Risk Premia and Survey Evidence on Macroeconomic Uncertainty. International Journal of Central Banking, 2011, June, pp. 113–133.

Sokolova A. V. Infliatsionnye ozhidaniia i krivaia Fillipsa: otsenka na rossiiskikh dannykh [Inflation expectations and the Phillips curve: estimation on Russian data]. Den’gi i kredit [Money and credit], 2014, no. 11, pp. 61–67. (In Russian)

Sousa R., Yetman J. Inflation expectations and monetary policy. BIS Papers, 2016, no. 89. Available at: https://www.bis.org/publ/bppdf/bispap89d_rh.pdf (accessed: 23.08.2018).

Stivens-Davidovits S. Vse lgut. Poiskoviki, BigData i Internet znaiut o vas vse [Everybody lies. Search engines, big data and the Internet know all about you]. Moscow, EHksmo, 2018. 384 p. (In Russian)

Vosen S., Schmidt T. Forecasting private consumption: survey‐based indicators vs. Google trends. Journal of Forecasting, 2011, vol. 30, no. 6, pp. 565–578.

Zhemkov M. I., Kuznetsova O. S. Izmerenie infliatsionnykh ozhidanii uchastnikov finansovogo rynka of financial market participants in Russia]. Voprosy ekonomiki [Questions of Economics], 2017, no. 10, pp. 111–122. (In Russian)

Published

2019-02-17

How to Cite

Балацкий, Е. В., & Юревич, М. А. (2019). Measuring inflation expectations: Traditional and innovative approaches. St Petersburg University Journal of Economic Studies, 34(4), 534–552. https://doi.org/10.21638/spbu05.2018.403

Issue

Section

Macro and Microeconomic Research