Opportunities and prospects for using digital technologies in auditing

Authors

DOI:

https://doi.org/10.21638/spbu05.2020.206

Abstract

The digital economy creates new opportunities for the development of all types of economic activity, and first of all it allows to improve the organizational, technical and methodological support of information services, which include audit services. Developing technologies based on artificial intelligence, descriptive and predicative analysis of big data can find an applied aspect in the digitalization of audit activities, which will help to accelerate the collection of information, the transition from manual procedures to computer-aided processing of information, planning algorithms and a deeper understanding of the activities of audited entities. With the development of the market of high (hi-tech) and end-to-end technologies, digitalization of information systems of economic entities, the problems of adapting auditory methodological and organizational-technological tools to current conditions become urgent. Thus, in auditing science there is a paradigm shift: the transition from traditional audit to intellectual (AI audit), the methodology of which is based on machine learning technology in the professional field and the use of professional cognition. The application of the ecosystem approach allows us to describe the features of the content and functional purpose of individual digital technologies for performing cognitive processes in audit activities. A cognitive ecosystem of audit activities is proposed, which is necessary for defining digital technologies, with the help of which specif- ic tasks and directions of audits and audit-related services can be implemented. The proposed ecosystem can be used as a supporting mechanism for creating a comprehensive AI-audit system in audit organizations and for developing AI-audit as a field of scientific knowledge.

Keywords:

digital economy, digital technologies, audit services, intellectual audit, AI-technologies, professional judgment

Downloads

Download data is not yet available.
 

References

Литература на русском языке

Абдикеев Н. М., Аверкин А. Н., Ефремова Н. А. (2010) Когнитивная экономика в эпоху инноваций. Вестник РЭА. No 1. С. 3–20.

Егорова И. С. (2019) Использование данных интернет-среды в аудите. Аудитор. No 5. С. 14–28.

Жильцова Ю.В., Кемаева С.А., Козменкова С.В., Маслова Т.С. (2018) Формирование современной парадигмы аудита как прикладной науки. Международный бухгалтерский учет. No 17–18. С. 1037–1049.

Карелин В.П. (2011) Интеллектуальные технологии и системы искусственного интеллекта для поддержки принятия решений. Вестник Таганрогского института управления и экономики. 2011. No 2. С. 79–84.

Кудрявцева Е.И. (2013) Когнитивная экономика и когнитивный менеджмент: поиск концепции и управления новыми человеческими ресурсами. Научные труды Северо-Западного института управления РАНХиГС. Т. 4. No 4 (11). С. 58–67.

Кун Т. С. (2009) Структура научных революций. М.: АСТ. 310 с.

Остроух А.В. (2015) Интеллектуальные системы. Красноярск: Научно-инновационный центр. 110 с.

Пожарицкая И. М. (2017) Когнитивный аудит: новая парадигма. Аудитор. No 7. С. 11–15.

Родзин С.И., Титаренко И.Н.(2013) NBIC-технологии, искусственный интеллект и электронная культура. Информатика, вычислительная техника и инженерное образование. No 2. Вып.13. С. 60–74.

Ситнов А.А. (2015) Особенности аудита информационной безопасности бизнес-систем. Аудитор. No 9. С. 14–22.

Соболева Г.В. (2017) Использование метода больших данных для оценки рисков недобросовестных действий. Аудиторские ведомости. No 5. С. 173–184.

Сухарева М.А. (2018) От концепции постиндустриального общества к концепции экономики знаний и цифровой экономики: критический анализ терминологического поля. Государственное управление. Электронный вестник. No 68. С. 445–464.

Тихонов Э. Е., Ворохобина Я. В. (2018) Цифровая экономика: новые парадигмы развития цифровых валют и приложение технологий блокчейн в аудите. Научный вестник Государственного автономного образовательного учреждения высшего профессионального образования «Невинномысский государственный гуманитарно-технический институт». No 1. С. 128–131.


References in Latin Alphabet

Abdolmohammadi M.J. (1987) Decision support and expert systems in auditing: a review and research directions. Accounting and Business Research (Spring), vol. 17, pp. 173–185.

Abhishek N., Divyashree M. S. (2019) Application of Robotics in Accounting and Auditing of Business and Financial Information. Inspira — Journal of Modern Management & Entrepreneurship (JMME), vol. 9, no. 2, pp. 1–5.

Baldwin A. A., Brown C. E., Trinkle B. S. (2006) Opportunities for artificial intelligence development in the accounting domain: the case for auditing. Intelligent Systems in Accounting, Finance & Management: International Journal, vol. 14, no. 3, pp. 77–86.

Biggs S. F., Selfridge M., Krupka G. R. (1993) A computational model of auditor knowledge and reasoning processes in the going-concern judgment. Auditing: A Journal of Practice and Theory, vol. 12, pp. 82–99.

Bonner S. E., Pennington N. (1991) Cognitive processes and knowledge as determinants of auditor expertise. Journal of Accounting Literature, vol. 10, pp. 1–50.

Boritz J.E., Wensley A.K.P. (1990) Structuring the assessment of audit evidence — an expert systems approach. Auditing: A Journal of Practice and Theory, vol. 9, pp. 49–98.

Brandas C., Muntean M., Didraga O. (2018) Intelligent decision support in auditing: Big Data and machine learning approach. 17th International Conference on Informatics in economy (IE 2018) Education, Research & Business Technologies. The Bucharest University of Economic Studies. Bucharest. Romania, pp. 425–430.

Brennan B., Baccala M., Flynn M. (2017) Artificial Intelligence Comes to Financial Statement Audits. CFO. URL: https://www.cfo.com/auditing/2017/02/artificial-intelligence-audits/ (дата обращения: 04.08.2019).

Calderon T.G., Cheh J.J. (2002) A roadmap for future neural research in auditing and risk assessment. International Journal of Accounting Information Systems, vol. 3–4, pp. 203–236.

Chiu C. T., Scott R. (1994) An intelligent forecasting support system in auditing: expert system and neural network approach. System Sciences, vol. 3, pp. 272–280.

Commerford B. P. Dennis S. A., Joe J. R., Wang J. (2019) Complex Estimates and Auditor Reliance on Artificial Intelligence. Elsevier. URL: Elsevier https://ssrn.com/abstract=3422591 (дата обращения: 04.08.2019).

Davis J.T., Massey A.P., Lovell I.I. (1997) Supporting a complex audit judgment task: an expert network approach. European Journal of Operational Research, vol. 103(2), pp. 350–372.

Eining M.M., Jones D.R. (1997) Reliance on decision aids: an examination of auditors’ assessment of management fraud. Auditing: A Journal of Practice and Theory, vol. 16(2), pp. 1–19.

Etheridge H.L., Sriram R.S., Hsu H.Y.K. (2000) A comparison of selected artificial neural networks that help auditors evaluate client financial viability. Decision Sciences, vol. 31(2), pp. 531–550.

Fanning K., Cogger K., Srivastava R. (1995) Detection of management fraud: a neural network approach. Intelligent Systems in Accounting, Finance and Management, vol. 4, pp. 113–126.

Fay R., Negangard E. M. (2017) Manual Journal Entry Testing: Data Analytics and The Risk of Fraud. Journal of Accounting Education, vol. 38, pp. 37–49.

Gepp A., Linnenluecke M. K., O’Neill T. J., Smith T. (2018) Big Data Techniques in Auditing Research and Practice: Current Trends and Future Opportunities. Journal of Accounting Literature, vol. 40, pp. 102– 115.

Greenman C. (2017) Exploring the Impact of Artificial Intelligence on the Accounting Profession. Journal of Research in Business, Economics and Management, vol. 8, no. 3, pp. 1451–1454.

Griffith E.E., Hammersley J.S., Young D., Kadous K. (2015) Auditor Mindsets and Audits of Complex Estimates. Journal of Accounting Research, vol. 53, no. 1, pp. 49–77.

Hashimzade N., Myles G. D., Rablen M. D. (2016) Predictive Analytics and The Targeting of Audits. Journal of Economic Behavior & Organization, vol. 124, pp. 130–145.

Issa H., Sun T., Vasarhelyi M.A. (2016) Research Ideas for Artificial Intelligence in Auditing: The Formalization of Audit and Workforce Supplementation. Journal of Emerging Technologies in Accounting, vol. 13, no. 2, pp. 1–20.

Koh H. C. (2004) Going concern prediction using data mining techniques. Managerial Accounting Journal, vol. 19, no. 3, pp. 462–476.м

Kokina J., Davenport Th. H. (2017) The Emergence of Artificial Intelligence: How Automation is Changing Auditing. Journal of emerging technologies in accounting, vol. 14, no. 1, pp. 115–122.

Koskivaara E. (2017) Artificial neural network models for predicting patterns in auditing monthly balances. Journal of the Operational Research Society, vol. 51, pp. 1060–1069.

Kozlowski S. (2016) Audit Ecosystem. Doctoral dissertation, Rutgers, The State University of New Jersey. 135 p.

Lenard M.J., Alam P., Booth D., Madey G. (2001) Decision-making capabilities of a hybrid system applied to the auditor’s going-concern assessment. International Journal of Intelligent Systems in Accounting, Finance and Management, vol. 10, pp. 1–24.

Luo J., Hu Zh., Wang L. (2018) Research on CPA Auditing Reform Strategy Under the Background of Artificial Intelligence. Advances in Social Science, Education and Humanities Research. 2nd International Conference on Management, Education and Social Science, vol. 176, pp. 935–939.

Meservey R. D., Bailey Jr. A. D., Johnson P. E. (1986) Internal control evaluation: a computational model of the review process. Auditing: A Journal of Practice and Theory, vol. 6, no. 1, pp. 44–74.

Sun T., Vasarhelyi M.A. (2018) Embracing Textual Data Analytics in Auditing with Deep Learning. The International Journal of Digital Accounting Research, vol. 18, pp. 49–67.

Li Q., Vasarhelyi M. A. (2018) Developing a Cognitive Assistant for the Audit Plan. The International Journal of Digital Accounting Research, vol. 18, pp. 119–140.

Omoteso K. (2012) The application of artificial intelligence in auditing: Looking back to the future. Expert Systems with Applications, vol. 39, no. 9, pp. 8490–8495.

Perols J. (2011) Financial Statement Fraud Detection: An Analysis of Statistical and Machine Learning Algorithms. Auditing: A Journal of Practice & Theory, vol. 30, no. 2, pp. 19–50.

Rozen C. (2018) Small Firm Blazes Trail in Artificial Intelligence Use for Audits. Bloomberg Tax. p. 38. Ramlukan R. How Big Data and Analytics Are Transforming the Audit. URL: http://bit.ly/2pJJ8ju (дата обращения: 04.08.2019).

Ukpong E.G., Udoh I.I., Essien I.T. (2019) Artificial Intelligence: Opportunities, Issues and Applications in Accounting and Auditing in Nigeria. Asian Journal of Economics, Business and Accounting, vol. 10, no. 1, pp. 1–6.

Vasarhelyi M., Bonson E., Hoitash R. (2005) Artificial Intelligence in Accounting and Auditing: International Perspectives. 225 р.

Welch O. J., Reeves T. E., Welch S. T. (1998) Using a genetic algorithm-based classifier system for modeling auditor decision behavior in a fraud setting. International Journal of Intelligent Systems in Accounting, Finance and Management, vol. 7, pp. 173–186.

Published

2020-07-17

How to Cite

Yakimova , V. (2020). Opportunities and prospects for using digital technologies in auditing. St Petersburg University Journal of Economic Studies, 36(2), 287–318. https://doi.org/10.21638/spbu05.2020.206

Issue

Section

Innovations and digital economy