Forecasting real eff ective exchange rate indices of currencies using a stochastic factor

Authors

  • Алексей Владимирович Воронцовский St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-6473-1951
  • Людмила Федоровна Вьюненко St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-9741-3949

DOI:

https://doi.org/10.21638/11701/spbu05.2017.401

Abstract

This article considers the possibility of forecasting real effective exchange rate indices for leading world countries. A stable unified mean trajectory for a reliable forecast of the index cannot be constructed using data from 31 January 1994 to 30 April 2017; however, it is reasonable to use data of the last period for this purpose. To construct a short-term forecast of real effective exchange rates based on initial value, we propose using a simulation with a discrete approximation of stochastic differential equations of Merton, Vasicek, Dosen, Ogden, and Cox-Ingersoll-Ross, and a polynomial residues model. Simulations using discrete approximations of the Vasicek, Merton, Dosen, and Ogden equations did not allow constructing a reliable forecast of the specified index using data from April 2016 to March 2017 for the USA, UK, Eurozone countries, Japan, and Switzerland. Processing simulation results based on a discrete approximation of the stochastic Cox-Ingersoll-Ross equation and the polynomial residues model, and for the considered countries for most of the same time period, resulted in a 50 % confidence interval for the mean trajectory of observed values of effective exchange rates indexes. The quality of the forecast essentially depends on the selected time period and methods used to determine the numerical parameters of discrete approximations for the original stochastic equations.

Keywords:

real effective exchange rates, stochastic equations, dynamics of exchange rates, models of polynomial residues, discrete linear approximation, simulation, confidence intervals, forecasting, given current values

Downloads

Download data is not yet available.
 

Author Biographies

Алексей Владимирович Воронцовский, St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

Doctor of Economics, Professor

Людмила Федоровна Вьюненко, St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

PhD in Physics and Mathematics, Associate Professor

References

Литература на русском языке

Амосов А. А., Дубинский Ю. А., Копченова Н. В. Вычислительные методы для инженеров: уч. пособие. М.: Высшая школа, 1994. 544 с.

Андерсон Т. Статистический анализ временных рядов / пер. с англ. М.: Мир, 1976. 155 с.

Банди Б. Д. Методы оптимизации. Вводный курс. М.: Радио и связь, 1988. 128 с.

Воронцовский А. В. Современные теории рынка капитала. М.: Экономика, 2010а. 714 с.

Воронцовский А. В. Современные подходы к моделированию экономического роста // Вестн. С.-Петерб. ун-та. Серия 5: Экономика. 2010б. Вып. 3. С. 105–119.

Воронцовский А. В., Вьюненко Л. Ф. Построение траекторий развития экономики на основе аппроксимации условий стохастических моделей экономического роста // Вестн. С.-Петерб. ун-та. Серия 5: Экономика. 2014. Вып. 3. С. 123–147.

Евдокимова Т. В., Зубарев А. В., Трунин П. В. Влияние реального обменного курса рубля на экономическую активность в России. М.: Изд-во Ин-та Гайдара, 2013. URL: http://iep.ru/fi les/text/working_papers/Nauchnie_trudi-165.pdf (дата обращения: 21.02.2016).

Кудрин А. Л. Реальный эффективный курс рубля: проблемы роста // Вопросы экономики. 2006. № 10. C. 4–18.

Люу Ю.-Д. Методы и алгоритмы финансовой математики / пер. с англ. М.: БИНОМ. Лаборатория знаний, 2007. 751 с.

Моделирование экономического роста в условиях современной экономики / А. В. Воронцовский, А. Ю. Дикарев, Т. Д. Ахобадзе, А. Л. Дмитриев, В. Г. Шеров-Игнатьев; отв. ред. А. В. Воронцовский. СПб.: Изд-во С.-Петерб. ун-та, 2011. 284 с.

Панфилов М. А. Расчет и анализ динамики эффективного обменного курса рубля // Аудит и финансовый анализ. 2009. № 2. C. 90–95.

Трунин П., Князев Д., Кудюкина Е. Анализ факторов динамики обменного курса рубля. М.: Изд-во Ин-та Гайдара, 2010. 68 с.


References in Latin Alphabet

Anderson G. H., Karamouzis N. V., Skaperdas P. D. A New Effective Exchange Rate for the Dollar and Its Implications for U. S. Merchandise Trade. Federal Reserve Bank of Cleveland Economic Review, 1987. Quarter 2. P. 2–23.

Brennan M., Schwartz E. Continuous Time Approach to the Pricing of Bonds // Journal of Banking and Finance. 1979. P. 133–135.

Chinn M. D. A primer on Real Effective Exchange Rates: Determinants, Overvaluation, Trade flows and Competitive Devaluation // Open economies review. 2006. Vol. 17. P. 115–143.

Cox J. C., Ingersoll J. E., Ross S. A. Theory of the Term Structure of Interest Rates // Econometrica. 1985. Vol. 53, N 2. P. 385–407.

Davidson J. Stochastic Limit Theory: An Introduction for Econometricians. London: Oxford University Press, 1994. 539 p.

Dosse T. Real Exchange Rate Misalignment and Economic Growth in Developing Countries // South-Western Economic Review. 2007. Vol. 3. P. 57–72.

Dothan M. On the Term Structure of Interest Rates // Financial Economics. 1978. Vol. 6, N 1. P. 59–69.

Dougherty С. Introduction to Econometrics. 5rd ed. London: Oxford University Press, 2016. 608 p.

Eichengreen B. The Real Exchange Rate and Economic Growth. Paper prepared for the Growth Commission, 2007. World Bank. Working paper no. 4. URL: http://documents.worldbank.org/curated/en/868701468152077108/pdf/577040NWP0Box31UBLIC10gc1wp10041web.pdf (accessed: 15.06.2017).

Higham D. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review. 2001. Vol. 43, N 3 (Sep. 2001). Р. 525–546. Stable. URL: http://www.jstor.org/stable/3649798 (accessed: 10.06.2017).

Hull J., White A. Pricing interest rate derivative securities // Review of Financial Studies. 1990. Vol. 3, No 5. P. 573–595.

Hutzenthaler M., Jentzen A., Kloeden P. E. Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations // Annals of Applied Probability. 2013. Vol. 23, No 5. P. 1913–1966 [Peer Reviewed Journal].

Kloeden P., Neuenkirch A., Pavani R. Multilevel Monte Carlo for stochastic differential equations with additive fractional noise // Annals of Operations Research. 2011. Vol. 189, N 1. P. 255–276.

Maeso-Fernandez F., Osbat Ch., Schnatz B. Pitfalls in estimating equilibrium exchange rates for transition economies // Economic Systems. 2005. Vol. 29, N 2. P. 130–143.

Maeso-Fernandez F., Chiara O., Schnatz B. Determinants of the euro real effective exchange rate: a BEER/PEER approach // Australian Economic Papers. 2002. Vol. 41 (4). P. 437–461.

Merton R. C. Theory of rational option pricing // Bell Journal of Economics and Management Science. 1973. No 4. P. 141–183.

Nelder J. A., Mead R. A Simplex Method for Function Minimization // The Computer Journal. 1965. Vol. 7, Iss. 4. P. 308–313. URL: https://doi.org/10.1093/comjnl/7.4.308 (accessed: 15.10.2017).

Ogden J. P. An Analysis of Yield Curve Notes // Journal of Finance. 1987. Vol. 42, N 1. P. 99–110.

Spilimbergo A., Vamvakidis А. Real Effective Exchange Rate and the Constant Elasticity of Substitution Assumption // Journal of International Economics. 2003. Vol. 60, N 2. P. 337–354.

Stock J. H., Watson M. W. Introduction to Econometrics. Update. 3rd ed. Pearson Addison-Wesley, 2010. 827 p.

Vasicek O. An equilibrium characterization of the term structure // Journal of Financial Economics. 1977. Vol. 5. P. 177–178.

Wu F., Mao X., Kloeden P. E. Almost sure exponential stability of the Euler–Maruyama approximations for stochastic functional differential equations // Random Operators and Stochastic Equations. 2011. Vol. 19, N 2. P. 165–186.


Translation of references in Russian into English

Amosov A. A., Dubinskii Iu. A., Kopchenova N. V. Vychislitel’nye metody dlia inzhenerov: uch. Posobie [Computational Methods for Engineers]. Moscow, Vysshaia shkola Publ., 1994. 544 p. (In Russian)

Anderson G. H., Karamouzis N. V., Skaperdas P. D. A New Effective Exchange Rate for the Dollar and Its Implications for U. S. Merchandise Trade. Federal Reserve Bank of Cleveland Economic Review, 1987, Quarter 2, pp. 2–23.

Anderson T. Statisticheskii analiz vremennykh riadov [The Statistical Analysis of Time Series]. Transl. from engl. Moscow, Mir Publ., 1976. 155 p. (In Russian)

Bandi B. D. Metody optimizatsii. Vvodnyi kurs [Basics of Optimisation Methods]. Moscow, Radio i sviaz’ Publ., 1988. 128 p. (In Russian)

Brennan M., Schwartz E. Continuous Time Approach to the Pricing of Bonds. Journal of Banking and Finance, 1979, pp. 133–135.

Chinn M. D. A primer on Real Effective Exchange Rates: Determinants, Overvaluation, Trade flows and Competitive Devaluation. Open economies review, 2006, vol. 17, pp. 115–143.

Cox J. C., Ingersoll J. E., Ross S. A. Theory of the Term Structure of Interest Rates. Econometrica, 1985, vol. 53, no. 2, pp. 385–407.

Davidson J. Stochastic Limit Theory: An Introduction for Econometricians. London, Oxford University Press, 1994. 539 p.

Dosse T. Real Exchange Rate Misalignment and Economic Growth in Developing Countries. South-Western Economic Review, 2007, vol. 3, pp. 57–72.

Dothan M. On the Term Structure of Interest Rates. Financial Economics, 1978, vol. 6, no. 1, pp. 59–69.

Dougherty С. Introduction to Econometrics. 5rd ed. London, Oxford University Press, 2016. 608 p.

Eichengreen B. The Real Exchange Rate and Economic Growth. Paper prepared for the Growth Commission, 2007. World Bank. Working paper no. 4. Available at: http://documents.worldbank.org/curated/en/868701468152077108/pdf/577040NWP0Box31UBLIC10gc1wp10041web.pdf (accessed: 15.06.2017).

Evdokimova T. V., Zubarev A. V., Trunin P. V. Vliianie real’nogo obmennogo kursa rublia na ekonomicheskuiu aktivnost’ v Rossii [Th e impact of the real exchange rate of the ruble on economic activity in Russia]. Moscow, Izdatel’stvo Instituta Gaidara, 2013. Available at: http://iep.ru/fi les/text/working_papers/Nauchnie_trudi-165.pdf (accessed: 21.02.2016). (In Russian)

Higham D. An algorithmic introduction to numerical simulation of stochastic diff erential equations. SIAM Review, 2001, vol. 43, no. 3 (Sep. 2001), pp. 525–546. Stable. Available at: http://www.jstor.org/stable/3649798 (accessed: 10.06.2017).

Hull J., White A. Pricing interest rate derivative securities. Review of Financial Studies, 1990, vol. 3, no. 5, pp. 573–595.

Hutzenthaler M., Jentzen A., Kloeden P. E. Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations. Annals of Applied Probability, 2013, vol. 23, no. 5, pp. 1913–1966 [Peer Reviewed Journal].

Kloeden P., Neuenkirch A., Pavani R. Multilevel Monte Carlo for stochastic differential equations with additive fractional noise. Annals of Operations Research, 2011, vol. 189, no. 1, pp. 255–276.

Kudrin A. L. Real’nyi eff ektivnyi kurs rublia: problemy rosta [The real effective ruble rate: growth problems]. Voprosy ekonomiki, 2006, no. 10, pp. 4–18. (In Russian)

Liuu Iu.-D. Metody i algoritmy fi nansovoi matematiki [Financial engineering and Computation Principles, Mathematics Algorithms]. Transl. from engl. Moscow, BINOM. Laboratoriia znanii Publ., 2007. 751 p. (In Russian)

Maeso-Fernandez F., Osbat Ch., Schnatz B. Pitfalls in estimating equilibrium exchange rates for transition economies. Economic Systems, 2005, vol. 29, no. 2, pp. 130–143.

Maeso-Fernandez F., Chiara O., Schnatz B. Determinants of the euro real effective exchange rate: a BEER/PEER approach. Australian Economic Papers, 2002, vol. 41 (4), pp. 437–461.

Merton R. C. Th eory of rational option pricing. Bell Journal of Economics and Management Science, 1973, no. 4, pp. 141–183.

Nelder J. A., Mead R. A Simplex Method for Function Minimization. Th e Computer Journal, 1965, vol. 7, iss. 4, pp. 308–313. Available at: https://doi.org/10.1093/comjnl/7.4.308) (accessed: 15.10.2017).

Ogden J. P. An Analysis of Yield Curve Notes. Journal of Finance, 1987, vol. 42, no. 1, pp. 99–110.

Panfilov M. A. Raschet i analiz dinamiki eff ektivnogo obmennogo kursa rublia [Calculation and analysis of the dynamics of the effective exchange rate of the ruble]. Audit i finansovyi analiz [Audit and financial analysis], 2009, no. 2, pp. 90–95. (In Russian)

Spilimbergo A., Vamvakidis А. Real Effective Exchange Rate and the Constant Elasticity of Substitution Assumption. Journal of International Economics, 2003, vol. 60, no. 2, pp. 337–354.

Stock J. H., Watson M. W. Introduction to Econometrics. Update, 3rd ed. Pearson Addison-Wesley, 2010. 827 p.

Trunin P., Kniazev D., Kudiukina E. Analiz faktorov dinamiki obmennogo kursa rublia [Analysis of factors of the dynamics of the exchange rate of the ruble]. Moscow, In-t Gaidara Publ., 2010. 68 p. (In Russian)

Vasicek O. An equilibrium characterization of the term structure. Journal of Financial Economics, 1977, vol. 5, pp. 177–178.

Vorontsovskiy A. V. Sovremennye podkhody k modelirovaniiu ekonomicheskogo rosta [Modern approaches to modeling of economic growth]. Vestnik SPbSU. Economics, 2010b, iss. 3, pp. 105–119. (In Russian)

Vorontsovskiy A. V. Sovremennye teorii rynka kapitala [Modern theories of the capital market]. Moscow, Ekonomika Publ., 2010a. 714 p. (In Russian)

Vorontsovskiy A. V., Dikarev A. Iu., Akhobadze T. D., Dmitriev A. L., Sherov-Ignat’ev V. G. Modelirovanie ekonomicheskogo rosta v usloviiakh sovremennoi ekonomiki [Modeling of economic growth in a modern economy]. Ed. A. V. Vorontsovskii. St. Petersburg, St. Petersburg Univ. Press, 2011. 284 p. (In Russian)

Vorontsovskiy A. V., Vyunenko L. F. Postroenie traektorii razvitiia ekonomiki na osnove approksimatsii uslovii stokhasticheskikh modelei ekonomicheskogo rosta [Constructing of Economic Development Trajectories by Approximating Conditions of Stochastic Models of Economic Growth]. Vestnik SPbSU. Economics, 2014, iss. 3, pp. 123–147. (In Russian)

Wu F., Mao X., Kloeden P. E. Almost sure exponential stability of the Euler–Maruyama approximations for stochastic functional differential equations. Random Operators and Stochastic Equations, 2011, vol. 19, no. 2, pp. 165–186.

Published

2017-12-29

How to Cite

Воронцовский, А. В., & Вьюненко, Л. Ф. (2017). Forecasting real eff ective exchange rate indices of currencies using a stochastic factor. St Petersburg University Journal of Economic Studies, 33(4), 522–549. https://doi.org/10.21638/11701/spbu05.2017.401

Issue

Section

Macroeconomic research

Most read articles by the same author(s)

1 2 > >>